1 / 23

Structure and Density Predictions for Energetic Materials

Structure and Density Predictions for Energetic Materials. Zuyue Du, Sayta Prasad, Ed Wells and Herman L. Ammon Department of Chemistry & Biochemistry, University of Maryland College Park, MD 20742 Picatinny Arsenal, NJ Oct. 27, 2004. pt grp. r g/cc. r VA ***. RDX. C s. 1.806*.

stacey
Download Presentation

Structure and Density Predictions for Energetic Materials

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Structure and Density Predictions for Energetic Materials Zuyue Du, Sayta Prasad, Ed Wells and Herman L. Ammon Department of Chemistry & Biochemistry, University of Maryland College Park, MD 20742 Picatinny Arsenal, NJ Oct. 27, 2004

  2. pt grp r g/cc rVA*** RDX Cs 1.806* 1.838 a-HMX C2 1.839* 1.847 b-HMX Ci 1.902* “ d-HMX C2v 1.759* “ 4-ring ~Ci 1.668** 1.829 10-ring C1 1.750** 1.810 Density --> "primary physical parameter in detonation performance" Cyclic nitramines, (CH2NNO2)n units *exptl **structure prediction *** rVA = mass / S(atom/group volumes)

  3. r problems withconstitutional isomers….

  4. Crystal Structure Prediction… ab initio geometry optimization; usually G03, b3lyp/631g* model Mimic exptl crystal structures for triclinic -> orthorhombic sp grps; Use exptl coordn geom patterns; Create hypothetical crystal structures for 29 coordination geometries; ~6,900 structures/coordn geom MOLPAK 400-900 highest r each geom Optimize unit cell parameters, model orientation & position by lattice E minimization; WMIN: atom-centered charge electrostatics DMAREL: distributed multipole electrostatics refinement

  5. 1 P1 [1] 58 0.4 21 C222 1 0.01 2 P-1 [2] 1747 12.6 23 I222 2 0.01 4 P21 [2] 1507 10.9 29 Pca21 [2] 137 1.0 5 C2 [1] 125 0.9 33 Pna21 [3] 253 1.8 7 Pc 46 0.3 34 Pnn2 2 0.01 9 Cc [1] 135 1.0 41 Aba2 10 0.1 13 P2/c 12 0.1 45 Iba2 9 0.1 14 P21/c [5] 5157 37.2 52 Pncn 1 0.01 15 C2/c [3] 557 4.0 56 Pccn 35 0.3 18 P21212 [3] 57 0.4 60 Pbcn [2] 62 0.4 19 P212121 [2] 3210 23.2 61 Pbca [2] 714 5.2 20 C2221 14 0.1 MOLPAK coverage… all triclinic to Z = 8 orthorhombicspace groups For C-H-N-O-F molecules, space group frequencies are… # Sp Grp N % # Sp Grp N % MOLPAK coordination geometries = S[29] ~ 99%

  6. WMIN LE potential… Optimize crystal structure… Adjust unit cell, model position & orientation A, B, C: empirical coefficients… Aij = (Aatom_type_i * Aatom_type_j)1/2 Currently have 69 atoms types… Eg, C-NO2, N-NO2, cubane-NO2, N-NO2 R3N, C(=O)NR2

  7. Crystal structure prediction… successes and problems… X-ray model 29*400-900/geom -> lattice refinement & LE calcns Examples.. (CH3)2NNO2 * TNAZ * RDX * e-CL20 * FOX7 # 2, +0.4 In 80% smallest LE -> exptl structure In 20% exptl structure in top 6 lowest LE solutions

  8. Structure prediction example, e-CL20 from B3lyp/631g* model # r E Space # r E Space group group 1 1.996 -43.56 P21/c 16 1.856 -36.46 C2/c 2 1.966 -42.28 P212121 17 1.870 -35.92 P21 3 1.965 -42.20 P212121 18 1.777 -35.85 P21 4 1.898 -39.63 P21/c 19 1.856 -35.56 Cc 5 1.898 -39.63 P21/c 20 1.804 -35.50 Pbcn 6 1.838 -38.07 C2/c 21 1.783 -35.32 Pna21 7 1.851 -37.99 Pbca 22 1.817 -34.63 Pbcn 8 1.875 -37.81 Pca21 23 1.721 -33.68 P21212 9 1.901 -37.68 P21/c 24 1.734 -33.57 C2 10 1.832 -37.34 C2/c 25 1.690 -32.56 Pna21 11 1.802 -37.24 Pbca 26 1.799 -31.96 Pca21 12 1.877 -37.18 P-1 27 1.706 -31.34 P1 13 1.877 -37.18 P-1 28 1.656 -31.04 P21212 14 1.835 -37.11 Pna21 29 1.693 -29.85 P21212 15 1.810 -36.54 P21/c Cell Parameters: a b c b X-ray 8.852 Å 12.556 13.386 106.82o Predicted D (%) 1.55 -0.53 0.98 -0.65 robsd= 2.043 g/cc

  9. Structure prediction -> new molecule evaluation…

  10. ROTPAK…pack & adjust conformation, minimize Etotal… Criterion: Etotal = Einter + Eintra ~ Ethresh closest approach oriented moving molecule oriented molecule at origin move together until Etotal ~ Ethresh Ethresh = 0.5 kcal/mol for line alter conformation calc new Etotal < Ethresh > Ethresh no further improvement in Etotal new orientation

  11. ROTPAK examples… Model (G03), ROTPAK/WMIN and X-ray torsion angle comparison… # G03 RPK Xray # G03 RPK Xray # G03 RPK Xray 1 29.4º-> 26.0 20.9 1 -5.4º-> -5.2 -6.0 1 11.6º-> 11.6 9.6 2 0.0 -> 11.4 19.4 2 167.4 -> 173.6 179.3 2 -76.6 -> -1.6 -5.0 3 21.6 -> 10.3 7.2 3 -108.5 -> -30.6 -32.6 4 1.3 -> 1.8 13.5 5 30.0 -> -17.7 -16.4 6 -1.5 -> 30.3 25.4 7 38.3 -> -12.9 -9.2

  12. X-ray B3… RPK/ WMIN 1 41.4o 0.0o 45.0o 2 51.9 47.1 48.6 3 22.9 24.6 29.0 ROTPAK example… 3 2 1 X-ray B3lyp/631g* model

  13. a 12.57 Å 6.8% b 4.85 1.4 c 19.67 1.8 b 119.9o 2.9 r 1.53 -6.3 X-ray G03 + ROTPAK + WMIN

  14. ROTPAK example…RDX bond bending… G03 B3lyp/631g* model X-ray model ROTPAK + WMIN bend ~20o + N-NO2 twist

  15. dimension X-ray ROTPAK- X-ray (%) a (Å) 13.182 1.2 b 11.574 0.7 c 10.709 -0.6 r(g/cc) 1.806 -1.3 RDX X-ray and ROTPAK-modified overlays… RDX space group: Pbca unit cell comparison

  16. Some ROTPAK challenges…

  17. MOLPAK, the old and the new… • MOLPAK-1 • Uses pre-established coordn geoms (CN = 14) • Coordn geom sub-programs are hand-coded • Some structures don’t fit the rules • Structures built with repulsion-only potential • MOLPAK-2 • Build structures from crystal space group symmetry • One program does all symmetries • Structures built with 3-term potential • Special features more easily handled, eg H-bonding, • molecule-solvent complexes, ionic materials

  18. MOLPAK-2 flowchart for P21/c… Criteria: van der Waals radii repulsion energy total energy Determine length of an axis -> make line of C1 or Ci images; assume line is a/c or b axis Make rectangular box around origin, 0.5 Å spacing C1/Ci image at origin & each grid point in succession Pre-LE calcn criteria: van der Waals radii crystal density range For each grid, fill unit cell; calculate lattice energy Symmetry elements: inversion center, 2-fold screw axis, glide plane order surviving unit cells on basis of LE Lowest LE -> correct structure

  19. MOLPAK-2 examples… MOLPAK-1 failed -> no axial repeat molecules in coodn sphere

  20. Continuing and future work and goals… • Global atom type parameterization for both • WMIN and DMAREL ->new atom types • potential function cross-terms • anisotropic potential coefficients • Identification of the best/correct structure -> • LE’s and r‘s used currently • patterns of intermolecular contacts? • crystal habits/crystal face E’s? • ROTPAK & conformational flexibility -> • continue development -> • focus on intramolecular E evaluation & • multi-bond flexibility • MOLPAK-2 -> continue development -> • handle all space groups • extensive testing

  21. Extend to ionics (eg ADN), H-bonding, • high N compounds • New lattice energy refinement code • (WMIN replacement) -> modern fortran • analytical derivatives • automate use of individual atom types/ • cross-terms in LE potential • facilitate conformational refinement • Sensitivity -> density of states • impact/shock & friction – weakest bond + lattice E • steric hindrance to sheer • CHSSI: Super parallel MOLPAK/WMIN • w/ B. Rice & W. Mattson ARL, Picatinny Indian Head B. Chapman K. Baum H. Shechter P. Eaton J. Bottaro thanks

More Related