1 / 52

Reti Neurali nella previsione di variabili ambientali

Reti Neurali nella previsione di variabili ambientali. Organizzazione dell’esposizione. Il problema previsionale Soluzione lineare (ARX) Intelligenza artificiale e idrologia: approccio con reti neurali Pruning Risultati (Olona, Tagliamento) Previsione del PM10 a Milano.

stacie
Download Presentation

Reti Neurali nella previsione di variabili ambientali

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Reti Neuralinella previsione di variabili ambientali

  2. Organizzazione dell’esposizione • Il problema previsionale • Soluzione lineare (ARX) • Intelligenza artificiale e idrologia: approccio con reti neurali • Pruning • Risultati (Olona, Tagliamento) • Previsione del PM10 a Milano

  3. Requisiti di un sistema previsionale • accuratezza previsionale • .. anche nel caso in cui non siano disponibili i dati rilevati da tutte le stazioni (robustezza) • velocità computazionale • minimo orizzonte temporale utile

  4. Problematiche Idrologiche Rainfall/Runoff Pioggia cumulata 5gg • Variabilità spaziale: piogge/ permeabilità • Non linearità: imbibimento del terreno. • ingressi pluviometrici concentrati / distribuiti • modelli lineari/ non lineari

  5. Schema di previsione u2(t-) u1(t-) y(t) u2(t-  -1) u1(t-  -1) y(t-1) ... ... ... u2(t-  -m) u1(t-  -m) y(t-m) y(t+1) PREVISORE • y(t, t-1,..): termini autoregressivi (portate) • u1,u2(t-,t --1,..): termini esogeni (piogge) • : tempo di corrivazione piogge portate (ritardo)

  6. Previsione ricorsiva a K passi PREVISORE La del passo precedente diventa il primo termine autoregressivo nella nuova previsione u1t-+1 yt u1t- …. yt-L … PREVISORE yt u1t- yt-1 u1t- -1 …. yt-L+1 … K max = min(1, 2.. M)+1

  7. Approccio black-box lineare (ARX) AR X1 X2 • pioggia media: un unico ingresso X (perdita di informazione) • ningressi esogeni : pluviometri disponibili (es: 2) • stima parametrica MQ • linearità • ordini delle parti = ???

  8. Misure in tempo reale AR X2 X1 X3 Xn X2 2 X1 X1 3 1 • Se Xi non è disponibile si ha il blocco del predittore. • Soluzione: previsori d’emergenza

  9. ARX con soglie dominio di portata (mc/sec) Predittore 1 Predittore 2 Predittore 3 Soglia S1 S1=???? Soglia S2 S2=???? • Un diverso modello ARX per ogni classe idrologica In corrispondenza delle soglie si ha un brutale cambio di modello

  10. Dagli ARX alle ANN • Richiesta di modellizzazione non lineare • ARX vs reti neurali • Quale complessità per il predittore neurale? • Ottimalità parametri • Ottimalità ingressi (robustezza) • pruning

  11. Reti Neurali Artificiali (ANN) x0  w1,1 x1 x2 f y  ... xr wn,r  output strato nascosto (n neuroni) neurone d’uscita input

  12. Modelli di neuroni artificiali somma pesata degli ingressi (cfr. dendriti) xt w1,1 xt-1 xt-2 neurone  funzione logistica (cfr. assone) ... b xt- w1,r xt --1 1 ... input = f(Wx+b)

  13. Reti Neurali Artificiali (ANN) x0    w1,1 x1 x2 y  ... xr wn,r output strato nascosto (n neuroni) neurone d’uscita input

  14. Apprendimento • Il numero di parametri può arrivare a diverse centinaia • Algoritmi di ottimizzazione non lineare per la stima dei parametri,ad es minimizzando • overfitting

  15. Ann: problematiche • Minimi locali • Sovrataratura • Architettura ottimale Diversi training di una medesima struttura neurale • Pruning: rimozione di parametri da una rete di partenza completamente connessa • ottimale ed automatica selezione della struttura, non completamente connessa “Early stopping” Regolarizzazione Tentativi ed errori

  16. Analisi di Salienza • Sjè misura dell’incertezza di stima • la rimozione del peso con minima Sjgenera il minimo incremento di Etrain

  17. L’idea del pruning • Test error • Training error • Num parametri • Calibrazione = training+ testing • Training (LM) della rete iniziale sovraparametrizzata • Valutazione errore di test • Stima salienza dei pesi • Eliminazione peso a minore salienza • Retrain della nuova rete E test E train

  18. Caso Di Studio: Previsione in Tempo Reale Delle Portate Del Fiume Olona

  19. Inquadramento Idrologico • Area bacino (Castellanza): 190 kmq • Portata media: 2.5 mc/sec • Portata attesa per T=10 anni: 108 mc/sec • Minimo orizzonte previsionale utile: 3ore • basse correlazioni piogge/portate • Stazioni di misura: un idrometro, tre pluviometri • 15 eventi considerati (circa 1100 passi orari)

  20. Struttura dei previsori • ARX: ordini 2,111 5 par. • ANN1: 19 par. (6 neur, 3 pluv) • ANN2: 5 pars. (2 neur, 2 pluv)

  21. Risultati 3 h avanti • ANN vs ARX: • miglioramento del 10% in training • miglioramento del 20% in validazione • utilizzando una stazione pluviometrica in meno!!

  22. Caso di studio: Tagliamento • Area bacino: 2480 kmq • Q media: 90 mc/sec • Picco piena (1966) : 4000 mc/sec • 5 stazioni pluviometriche • 2000 dati di piena a passo orario

  23. Letteratura • Campolo et. Al. Water Resources Research, 1999 • Rete neurale completamente connessa (5 pluviometri) • Efficienza 5h avanti: 85%

  24. Risultati di pruning • Rete non completamente connessa • Utilizzo di 3 soli pluviometri • Efficienza 5h avanti: 84,5 %

  25. Conclusioni (1) • ANN permettono migliore qualità previsione rispetto ai lineari ARX (efficienza) • pruning trova in modo analitico una struttura ottimale • riduzione degli ingressi pluviometrici senza penalizzazione delle prestazioni previsionali

  26. Basin saturation issues • The catchment response to rainfall impulses depends strongly on the saturation state of the basin • An indirect measure at time (t) may be obtained by using the information R(,t), i.e. cumulated rainfall on the time window [t-,t] • The proxy can be noisy (spatial interpolation from local rain measures, differences between saturation and precipitation) • The basin state at time (t) is classified in a fuzzy way. For instance: • 1(t): membership related to saturation class 1 (“dry” class) • 2(t):membership related to class 2 (“wet” class) • 1(t) + 2(t) =1 (constraint)

  27. Fuzzyfication of cumulated rainfall R(,t) • Suitable values of  are found via hydrological analyses • A set of centroids is identified on R(,t)(C-means fuzzy clustering algorithm) • We fuzzify the basin state at each time step of the dataset

  28. Coupling fuzzy logic and neural networks • The rationale: each saturation class results in a different non-linear rainfall-runoff relationship • The idea: • to train a different, specialized neural network on each saturation class • to issue the forecast by linearly combining the prediction of the different models • the higher the membership related to a given saturation class, the higher the weight of the corresponding predictor on the forecast

  29. Specialized predictors training • We implemented a weighted least squares variant of the LM training algorithm: • To prevent overfitting, we jointly use regularization and early stopping during the training • The optimal architectures are selected via trial and error (20 estimates of each model) • The model showing the lowest wls on the validation set is finally chosen

  30. Issuing the forecast • As in Takagi Sugeno systems, we linearly combine the output of the specialized models: • is the prediction of the j-th specialized model • Switching between models is smooth and ruled by the state of the basin at time (t)

  31. Olona: 3-hours ahead prediction performances (testing set) • The fuzzy framework with =5 days appears the most effective forecasting approach

  32. Simulation sample

  33. CASO DI STUDIO: Tagliamento • Suddivisione dati: • Set di addestramento 1273 istanti • Set di prova 483 istanti • Set di validazione 599 istanti

  34. SOFTWARE: nnsyssid20 • Calcolo centroidi e membership: Funzione C-Means Clustering • Addestramento delle reti: Funzione wls_trial • Stima dell’altezza idrometrica: Funzione fuzzy_report

  35. Fo varianza dati reali F errore quadratico medio RISULTATI 1/2 Valutazione statistica • Errore quadratico medio: • Indice di correlazione: • Efficienza modello:

  36. RISULTATI 2/2 Previsione con Pcum 5gg (t+5) Confronto tra le altezze idrometriche previste e quelle registrate sull’intero set di validazione per i dati orari tra il 1978 e il 1996.

  37. eff 90,5 % CONFRONTO CON LETTERATURA Previsione con passo di 5h

  38. Conclusions (2) • The proposed approach uses specialized models and couples their output via fuzzy logic, in order to account for the basin saturation state • The framework outperforms the classical FFNN rainfall-runoff approach • The framework complexity does not involve significant computational overload nor additional measurement costs to issue the prediction

  39. Un’altra applicazione:reti neurali per la previsione del PM10 a Milano

  40. Milan case study • Significant reduction of the yearly average of pollutants such as SO2, NOx, CO, TSP (-90%, -50%, -65%, -60% in the period 1989-2001). • A major concern is constituted by PM10.Its yearly average is stable (about 45mg/m3) since the beginning of the monitoring (1998). • The limit value on the daily average (50mg/m3) is exceeded about 100 days every year. • The application: prediction at 9 a.m. of the PM10 daily average concentration of the current (and the following) day.

  41. Air pollutants trends on Milan • SO2, NOxand CO: decreasing trends (catalytic converters, improved heating oils) • PM10 and O3: increasing from the early 90’s

  42. Prediction methodology: FFNN X1 Hiddenlayer: logistic   X2  X3 Input set   PM10 expected concentration  Xn • The input set contains both pollutants (PM10, NOx, SO2) and meteorological data (pressure, temperature, etc). • The input hourly time series are grouped to daily ones as averages over of given hourly time windows (chosen by means of cross-correlation analysis). • The architecture is selected via trial and error and trained using the LM algorithm and early stopping.

  43. PM10 time series analysis • Available dataset: 1999-2002 • Winter concentrations are about twice as summer ones, both because of unfavorable dispersion conditions and higher emissions • On average, concentrations are about 25% lower on Sundays than in other days

  44. Deseasonalization approach • Yearly and weekly PM10 periodicities are clearly detected also in the frequency domain • The same periodicities are detected also on NOx and SO2 • On each pollutant, we fit a periodic regressorR(,t)before training the predictors. PM10pred (t)= R(,t) + y(t) [y(t) is the actual output of the ANN] R(,t)= =c+f(1,t)+ f(2,t) where: f(,t)=k [aksin(k t)+bkcos(k t)] k=1,2 1=2/365 day-1;2=2/7 day-1 • Meteorologicaldata are standardized as usual.

  45. Prediction at 9 a.m. for the current day t • CPO: • CPP: • FA: • Satisfactory performances. Deseasonalization allows to increase the average goodness of fit indicators • As a term of comparison, a linear ARX predictor results in  = 0.89and MAE=11mg/m3

  46. Prediction for the following day (t+1) • To meet such an ambitious target, we added further meteorological improper (i.e., unknown at 9 a.m. of day t)input variables, such as rainfall, temperature, pressure etc. measured over both day t and t+1 • The performances obtained in this way can be considered as an upper bound of what can be achieved by inserting actual meteorological forecasts in the predictor • Pollutant time series have been again deseasonalized via periodic regressor • We tried - besides trial and error - also a different identification approach for neural networks, namely pruning

  47. OBS pruning algorithm • training of the initial fully connected architecture; • ranking of parameters on the base of their relevance (saliency); • elimination of the parameter with the lowest saliency; • generation of a new architecture (one parameter less); • re-training of the obtained network; • evaluation of the mean square error over the validation set; • back to step 2, until there are parameters left

  48. Pruned ANNs X2 X1     X3 Selection Xn Pruned network sample • The network showing the lowest validation error is finally chosen as optimal • Pruned ANNs areparsimonious: theycontain one order of magnitude less parameters than fully-connected ones

  49. Results • Performances of the two models are very close to each other, decreasing strongly with respect to the 1-day case • As a term of comparison, the network trained without improper meteorological information looses justa few percent over the different indicators, showing an almost irrelevant gap

  50. Conclusions (3) • Performances on the 1-day prediction appears to be satisfactory: in this case, the system can be really operated as a support to daily decisions (traffic blocks, alarm diffusion,…). • Deseasonalization of data before training the predictors seems to be helpful in improving the performances. • 2-days forecast are disappointing, even if improper meteo data are introduced. Performance differences between pruned and fully connected neural networks are neglegible. • More comprehensive meteorological data (vertical profiles, mixing layer) may be more substantial than training methods in improving the quality of longer term forecasts.

More Related