180 likes | 308 Views
Spin Transfer and Power Flow at Subwavelength Scales. David Haefner. U NIVERSITY OF C ENTRAL F LORIDA. CREOL, C OLLEGE OF O PTICS AND P HOTONICS. Angular momentum. Torque. Rotation. Linear momentum. Force. Push. Mechanical action of light. Johannes Kepler: 1609.
E N D
Spin Transfer and Power Flow at Subwavelength Scales David Haefner UNIVERSITY OF CENTRAL FLORIDA CREOL, COLLEGE OF OPTICS AND PHOTONICS
Angular momentum Torque Rotation Linear momentum Force Push Mechanical action of light Johannes Kepler:1609 James C. Maxwell: (1873) “In a medium in which waves are propagated there is a pressure in the direction normal to the wave…” Comet tail points away from the Sun Joshua Tree National Park Nature, 444, 823, 2006 Quantitative experimental observations Beth R. “Mechanical Detection and Measurement of the Angular Momentum of Light”, Physical. Rev. 50: 115-125 1936. P. N. Lebedev “Experimental examination of light pressure”, Ann. der Physik, 6, 433 1901
Structuring energy flow with scattering? Scattering redistributes the incident energy Scattering depends on: Wavelength Polarization state Incident angle
Scattering Conservation laws for electromagnetic waves • Conservation of energy • Conservation of linear momentum • Conservation of angular momentum Angular momentum Spin Orbital C. Schwartz, A. Dogariu, Opt. Express 14, 8425-8433 (2006)
Virtual location of a source Right Circular Linear Distance along Y axis [λ] Left Circular Distance along X axis [λ]
Energy flow Complex behavior for larger spheres spans several λ
4.62μm polystyrene sphere in oil Dipole (IR IL) (IR IL) z [μm] z [μm] x [μm] x [μm] Direction sensitive observation Single Mode Fiber Linear Left Right
Experimental setup Micrometer size spheres Coherent fiber bundle Sumitomo IGN-08/30 CCD /4 Detector Typical incoherent image on CCD Polarizer Laser /4 /2 Incoherent illumination Fiber scanned 5 microns from surface, NA of fiber = 0.3 532nm light excitation 4.62μm diameter polystyrene sphere in oil Single mode fiber
Analytical Experimental 0.2 0.2 0.1 0 0 (IR-IL)/max(IR) (IR-IL)/max(IR) -0.1 -0.2 -0.2 -2 -1 0 1 2 -2 -1 0 1 2 Translation of optical fiber (μm) Translation of optical fiber (μm) Experimental results • First demonstration of momentum conservation in scattering • First demonstration of spin Hall effect in spherical geometry D. Haefner, S. Sukhov, A. Dogariu, Phys. Rev. Lett. 102, 123903 (2009)
Torques on lossless spheres Spin Torque Spin Torque Orbital Torque
Γo [pN nm] 0 0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 Sphere radius a [λm] Sphere radius a [λm] Γs [pN nm] Torques on lossless spheres Orbital Torque Spin Torque Brownian motion Intrinsic absorption Nano-mixer Clockwise Counter clockwise D. Haefner, S. Sukhov, A. Dogariu, Phys. Rev. Lett. 103, 173602 (2009)
A new mechanism for momentum exchange Linear momentum Force Push Angular momentum Torque Rotation • Optically induced torques • Asymmetry • Absorption • Birefringence • Near-field interaction Symmetric Lossless Homogeneous
Summary Angular momentum exchange in scattering Right • Shift in perceived interaction volume • Spin Hall effect of light Linear D. Haefner, S. Sukhov, A. Dogariu, “Spin Hall Effect of Light in Spherical Geometry”, Phys. Rev. Lett. 102, 123903 (2009) Left
Summary Angular momentum exchange in scattering Right • Shift in perceived interaction volume • Spin Hall effect of light Linear D. Haefner, S. Sukhov, A. Dogariu, “Spin Hall Effect of Light in Spherical Geometry”, Phys. Rev. Lett. 102, 123903 (2009) Left Interaction provides a “new mechanism” for optical torques • Continuous spin and orbital torques • Complex dependence on size for directionality of torques D. Haefner, S. Sukhov, A. Dogariu, “Conservative and Nonconservative Torques in Optical Binding”, Phys. Rev. Lett. 103, 173602 (2009)