1 / 25

Statistique et probabilité Série n° 1

Statistique et probabilité Série n° 1. Mr : OUIA AZIZ 2008/2009. Exercice 1 : Calculer : C 2 5 C 3 5 C 4 5 En déduire : C 4 6 En déduire : (a + b) 5 C 2 5 = 5!/(2!*3!)=10

stacy
Download Presentation

Statistique et probabilité Série n° 1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Statistique et probabilitéSérie n° 1 Mr : OUIA AZIZ 2008/2009

  2. Exercice 1 : Calculer : C25 C35 C45 En déduire : C46 En déduire : (a + b)5 C25 = 5!/(2!*3!)=10 C35 = 5!/(3!*2!)=10 C45 = 5  C46 = C35+ C45 = 10+5 = 15 (a+b)5=C55a5+C45a4b+C35a3b²+C²5a²b3+C15ab4+C05b5 = a5+5a4b+10a3b²+10a²b3+5ab4+b5

  3. Exercice 2 : Soit une classe de 20 étudiants. Combien d’équipes de 4 étudiants peut-on former à partir de cette classe. A420 =20*19*17*16=116280

  4. Exercice 3 : On dispose d’une urne qui contient 10 boules dont 6 sont rouges et 4 sont blanches. • Combien peut-on former de groupes différents de 4 boules ? • Combien parmi ces groupes, contiennent 4 boules blanches ? • Combien parmi ces groupes, contiennent au moins 1 boule blanches ?

  5. 1. C410 = 210 2. C44 = 1 3. C14*C36+ C²4*C²6+ C34C16+C44 =19 Il y a C46=15 échantillons qui contiennent des boules rouges donc, le nombre d’échantillons est égal à C410- C46 =210-15=195

  6. Exercice : On dispose d’une urne qui contient 10 boules dont 6 sont blanches et 4 sont rouges. • Combien peut-on former de groupes différents de 4 boules ? • Combien parmi ces groupes, contiennent 4 boules rouges ? • Combien parmi ces groupes, contiennent au moins 1 boule blanches ?

  7. 1. C410 = 210 2. C44 = 1 3. C16*C34+ C²6*C²4+ C36C14+C46 =209. Il y a C44 =1 échantillon qui contient des boules rouges donc, le nombre d’échantillons est égal à C410-C44 =210-1=209

  8. Exercice 4 : combien de signaux différents peut-on former, chaque signal étant constitué de 10 fanions alignés verticalement, dont 5 sont rouges, 3 sont jaunes et deux sont vertes ?

  9. Exercice 5 : dans une étude d’évaluation d’acquis par les étudiants, il est requis par l’étudiant de répondre à un examen de 8 questions. Les étudiants doivent répondre par « Vrai » ou « Faux ». Toutes les réponses d’un étudiant quelconque sont considérées comme une possibilité. Combien de possibilités différentes sont possibles ?

  10. Exercice 6 : dans une banque, on veut former une équipe de 2 cadres supérieurs et 4 cadres moyens pour s’occuper d’une nouvelle agence bancaire. L’équipe sera constituée à partir d’un effectif de banquiers de 10 cadres supérieur et 14 cadres moyens. De combien de façons différentes peut-on constituer cette équipe ?

  11. Exercice 7 : Dans une boite il y a 12 pièces qui sont bonnes et 8 qui sont défectueuses. De combien de manières peut-on former un échantillon comprenant 4 pièces bonnes et 3 pièces défectueuses ? C412*C38=27720

  12. Exercice 8 : 9 élèves sont nouvellement inscrits dans un collège. Comment peut-on les répartir dans les cas suivants : S’ils doivent être placés chacun dans une classe différente? S’ils sont classés 3 à 3 dans 3 classes différentes? S’il y a 4 classes, deux recevant 3 élèves, 1 recevant 2 élèves et une classe recevant 1 seul élève? 1) 9!=362880 2) 9!/(3!*3!*3!) =1680 3) 9!/(3!*3!*2!*1!)=5040

  13. Exercice 9 : Dans une entreprise, une machine non réglée produit 14 pièces par jour dont 8 sont bonnes et 6 sont défectueuses. A partir d’une production journalière de cette machine, on choisit au hasard des échantillons de 4 pièces. Combien d’échantillons différents peut-on former ? Combien d’échantillons constitués de 3 pièces bonnes et 3 pièces bonnes seulement peut-on former ?

  14. 1) C414=1001 2) Les échantillons doivent être constitués de 3 pièces bonnes et 1 pièce défectueuse. C38*C16=56*6=336

  15. Exercice 10 : On dispose de 6 photocopies d’un même baccalauréats et 8 chemises d’une même couleur où elles peuvent être placées. Calculer : Le nombre de manières de placer les 6 photocopies dans les 8 chemises. Le nombre de manières de placer les 6 photocopies dans les 8 chemises sans qu’il y en ait 2 dans la même chemise.

  16. 1)On peut remplacer les chemises par des papiers cartonnées simples. Il y aura 7 papiers cartonnés simples. Les deux derniers papiers cartonnés ne sont pas comptés. Le nombre de permutations possible des 6 et des 7 papiers cartonnés est une permutation avec répétition 13!/(6!*7!)=1716 2) La première photo à 8 places possibles et la deuxième on a 7 possibilités et les photocopies sont les mêmes donc il n y aura pas d’ordre ( l’ordre est indifférent). on va avoir A68/6!=C68=28

  17. Exercice 11 : Dans une course de voiture, 20 marques de voitures se disputent les 3 premières places. Combien y a-t-il de possibilités : Au total ? Dans lesquelles les 3 voitures soient dans l’ordre ? Dans lesquelles, elles sont soit dans l’ordre soit dans le désordre ? Dans lesquelles, elles sont dans le désordre ?

  18. 1) Il y a l’ordre car une voiture gagnante ne peut pas être en même temps dans les 3 classements. A320=20*19*18=6840 2) On va avoir l’ordre et donc un seul classement =1 3) On va avoir l’ordre et le désordre donc : 3!=3*2*1=6 On va avoir uniquement le désordre donc : 6-1=5

  19. Exercice 12 : Soient les chiffres suivants : {1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9}. Combien peut-on former de nombres de deux chiffres. A29= 9*8=72

  20. Exercice 13 : Sur 26 personnes interrogées, 12 personnes ont une petite voiture, 10 personnes ont une grande voiture et 4 personnes ont les deux tailles de voitures. De combien de façons peu-on choisir 6 personnes parmi les 26 si : Chacune des 6 personnes a au moins une voiture ? 4 d’entre elles ont une petite voiture et les deux autres ont une grande voiture. Chacune d’entre elle n’a qu’une seule voiture ? 4 d’entre elles ont au moins une petite voiture ?

  21. 1- (4 personnes ont deux voitures) donc, il reste (12+10-4)=18 personnes qui ont au moins une voiture donc : C618=18!/6!*12!= 18564 2- Les 4 premières personnes sont prises à partir de 8 personnes qui n’ont qu’une petite voiture. Le reste (2 personnes) sont prises à partir des 6 personnes qui n’ont qu’une grande voiture. Donc on aura C48*C²6=70*15 =1050

  22. 3- On peut avoir : 4 personnes qui ont une petite voiture ou 5 personnes qui ont une petite voiture ou 6 personnes qui ont une petite voiture donc on aura : C412*C²14+C512*C114+C612=991485

  23. Exercice 14 : Dans une entreprise travaille 30 personnes dont 20 hommes et 10 femmes. Le directeur technique veut former des équipes de 6 personnes avec au moins deux hommes et deux femmes. Déterminer le nombre de groupes que l’on peut choisir dans les cas suivants : Chaque personne peut être membre de cette équipe. 4 hommes et deux femmes n’acceptent pas d’être membre de cette équipe.

  24. 1- Nous pouvons avoir les scénarios suivants : {(2H et 4F) ; (3H et 3F) ; (4H et 2 F)} C²20*C410+C320*C310+C420C²10= = 39900+136800+ 218025 =394725 2- Il ne reste que (20-4)=16 hommes et (10-2)= 8 femmes C²16*C48+C316*C38+C416C²8 =8400+ 31360+50960 =90720.

  25. Exercice 15 : Soient A et B deux événements associés à une certaine expérience aléatoire tel que P(A)=0,3, P(AB)=0,7 et P(B)=p. • Déterminer p si A et B sont incompatibles. • Déterminer p si A et B sont indépendants. • Déterminer p si A et B ne sont pas incompatible, ni indépendants. De plus p(AB’)=0,2.

More Related