1 / 27

Design and Analysis of Clinical Study 5. Introduction to R and Statistics

Design and Analysis of Clinical Study 5. Introduction to R and Statistics. Dr. Tuan V. Nguyen Garvan Institute of Medical Research Sydney, Australia. Introduction: Historical development S, Splus Capability Statistical Analysis References Calculator Data Type Resources

star
Download Presentation

Design and Analysis of Clinical Study 5. Introduction to R and Statistics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Design and Analysis of Clinical Study 5. Introduction to R and Statistics Dr. Tuan V. Nguyen Garvan Institute of Medical Research Sydney, Australia

  2. Introduction: Historical development S, Splus Capability Statistical Analysis References Calculator Data Type Resources Simulation and Statistical Tables Probability distributions Outline

  3. S: an interactive environment for data analysis developed at Bell Laboratories since 1976 1988 - S2: RA Becker, JM Chambers, A Wilks 1992 - S3: JM Chambers, TJ Hastie 1998 - S4: JM Chambers Exclusively licensed by AT&T/Lucent to Insightful Corporation, Seattle WA. Product name: "S-plus". R: initially written by Ross Ihaka and Robert Gentleman at Dep. of Statistics of U of Auckland, New Zealand during 1990s. Since 1997: international "R-core" team of ca. 15 people with access to common CVS archive. History

  4. Introduction • R is "GNU S" — A language and environment for data manipula-tion, calculation and graphical display. • a suite of operators for calculations on arrays & matrices. • a large, coherent, integrated collection of data analysis tools • graphical facilities for data analysis • a well developed programming language

  5. What R does and does not • is not a database, but connects to DBMSs • has no graphical user interfaces, but connects to Java, TclTk • language interpreter can be very slow, but allows to call own C/C++ code • no spreadsheet view of data, but connects to Excel/MsOffice • no professional / commercial support • data handling and storage: numeric, textual • matrix algebra • hash tables and regular expressions • high-level data analytic and statistical functions • graphics • programming language: loops, branching, subroutines

  6. R and Statistics • Packaging: a crucial infrastructure to efficiently produce, load and keep consistent software libraries from (many) different sources / authors • Statistics: most packages deal with statistics and data analysis • State of the art: many statistical researchers provide their methods as R packages

  7. Data Analysis and Presentation • The R distribution contains functionality for large number of statistical procedures. • linear and generalized linear models • nonlinear regression models • time series analysis • classical parametric and nonparametric tests • clustering • smoothing • R also has a large set of functions which provide a flexible graphical environment for creating various kinds of data presentations.

  8. R as a calculator > log2(32) [1] 5 > sqrt(2) [1] 1.414214 > seq(0, 5, length=6) [1] 0 1 2 3 4 5 > plot(sin(seq(0, 2*pi, length=100)))

  9. Objects Primitive (or: atomic) data types in R are: • numeric (integer, double, complex) • character • logical • function out of these, vectors, arrays, lists can be built.

  10. R "grammar" object <- function(argument1, argument2, ..., argumentn) Example: > reg <- lm(y ~ x) x == 5 x bằng 5 x != 5 x không bằng 5 y < x y nhỏ hơn x x > y x lớn hơn y z <= 7 z nhỏ hơn hoặc bằng 7 p >= 1 p lớn hơn hoặc bằng 1 is.na(x) Có phải x là biến số missing A & B A và B (AND) A | B A hoặc B (OR) ! Không là (NOT)

  11. Reading Data 1 – Direct Method age insulin 50 16.5 62 10.8 60 32.3 40 19.3 48 14.2 47 11.3 57 15.5 70 15.8 48 16.2 67 11.2 > age <- c(50,62, 60,40,48,47,57,70,48,67) > insulin <-c(16.5,10.8,32.3,19.3,14.2,11.3,15.5,15.8,16.2,11.2) > ins <- data.frame(age, insulin)

  12. Reading Data 2 – read.table id sex age bmi hdl ldl tc tg 1 Nam 57 17 5.000 2.0 4.0 1.1 2 Nu 64 18 4.380 3.0 3.5 2.1 3 Nu 60 18 3.360 3.0 4.7 0.8 4 Nam 65 18 5.920 4.0 7.7 1.1 5 Nam 47 18 6.250 2.1 . 2.1 6 Nu 65 18 4.150 3.0 4.2 1.5 7 Nam 76 19 0.737 3.0 5.9 2.6 > setwd("c:/works/stats") > chol <- read.table("chol.txt", header=TRUE, na.missing=".")

  13. Reading Data 3 – read.csv • Bước 1: Dùng lệnh "Save as" trong Excel và lưu số liệu dưới dạng "csv"; • Bước 2: Dùng R (lệnh read.csv) để nhập dữ liệu dạng csv > setwd("c:/works/stats") > gh <- read.csv ("excel.csv", header=TRUE)

  14. A Simple Session sex <- c("Nam", "Nu", "Nu","Nam","Nam", "Nu","Nam","Nam","Nam", "Nu", "Nu","Nam", "Nu","Nam","Nam", "Nu", "Nu", "Nu", "Nu", "Nu", "Nu", "Nu", "Nu", "Nu","Nam","Nam", "Nu","Nam", "Nu", "Nu", "Nu","Nam","Nam", "Nu", "Nu","Nam", "Nu","Nam", "Nu", "Nu", "Nam", "Nu","Nam","Nam","Nam", "Nu","Nam","Nam", "Nu", "Nu") age <- c(57, 64, 60, 65, 47, 65, 76, 61, 59, 57, 63, 51, 60, 42, 64, 49, 44, 45, 80, 48, 61, 45, 70, 51, 63, 54, 57, 70, 47, 60, 60, 50, 60, 55, 74, 48, 46, 49, 69, 72, 51, 58, 60, 45, 63, 52, 64, 45, 64, 62) bmi <- c( 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 25, 25) hdl <- c(5.000, 4.380, 3.360, 5.920, 6.250, 4.150, 0.737, 7.170, 6.942, 5.000, 4.217, 4.823, 3.750, 1.904, 6.900, 0.633, 5.530, 6.625, 5.960, 3.800, 5.375, 3.360, 5.000, 2.608, 4.130,5.000, 6.235, 3.600, 5.625, 5.360, 6.580, 7.545, 6.440,6.170,5.270, 3.220, 5.400, 6.300, 9.110, 7.750, 6.200, 7.050, 6.300, 5.450,5.000,3.360,7.170,7.880,7.360,7.750) ldl <- c(2.0, 3.0, 3.0, 4.0, 2.1, 3.0, 3.0, 3.0, 3.0, 2.0, 5.0, 1.3, 1.2, 0.7, 4.0, 4.1, 4.3, 4.0, 4.3, 4.0, 3.1, 3.0, 1.7, 2.0, 2.1, 4.0, 4.1, 4.0, 4.2, 4.2, 4.4, 4.3, 2.3, 6.0, 3.0, 3.0, 2.6, 4.4, 4.3, 4.0, 3.0, 4.1, 4.4, 2.8, 3.0, 2.0, 1.0, 4.0, 4.6, 4.0) tc <-c (4.0, 3.5, 4.7, 7.7, 5.0, 4.2, 5.9, 6.1, 5.9, 4.0, 6.2, 4.1, 3.0, 4.0, 6.9, 5.7, 5.7, 5.3, 7.1, 3.8, 4.3, 4.8, 4.0, 3.0, 3.1, 5.3, 5.3, 5.4, 4.5, 5.9, 5.6, 8.3, 5.8, 7.6, 5.8, 3.1, 5.4, 6.3, 8.2, 6.2, 6.2, 6.7, 6.3, 6.0, 4.0, 3.7, 6.1, 6.7, 8.1, 6.2) tg <- c(1.1, 2.1, 0.8, 1.1, 2.1, 1.5, 2.6, 1.5, 5.4, 1.9, 1.7, 1.0, 1.6, 1.1, 1.5, 1.0, 2.7, 3.9, 3.0, 3.1, 2.2, 2.7, 1.1, 0.7, 1.0, 1.7, 2.9, 2.5, 6.2, 1.3, 3.3, 3.0, 1.0, 1.4, 2.5, 0.7, 2.4, 2.4, 1.4, 2.7, 2.4, 3.3, 2.0, 2.6, 1.8, 1.2, 1.9, 3.3, 4.0, 2.5) cong <- data.frame(sex, age, bmi, hdl, ldl, tc, tg) attach(cong)

  15. Bar Graph > sex.freq <- table(sex) > sex.freq sex Nam Nu 22 28 > barplot(sex.freq, main="Frequency of males and females") > barplot(table(sex), main="Frequency of males and females") > stripchart(tg, main="Strip chart for triglycerides", xlab="mg/L")

  16. Histogram, Boxplot > hist(age) > hist(age, main="Frequency distribution by age group", xlab="Age group", ylab="No of patients") > plot(density(age),add=TRUE) > boxplot(tc, main="Box plot of total cholesterol", ylab="mg/L") > boxplot(tc~sex, horizontal=TRUE, main="Box plot of total cholesterol", ylab="mg/L", col = "pink")

  17. Multiple Graphs > op <- par(mfrow=c(2,3)) > hist(tc) > hist(hdl) > hist(ldl) > hist(tg) > hist(bmi) > hist(age)

  18. Scatter Plots > plot(tc, hdl) > plot(hdl, tc, pch=ifelse(sex=="Nam", 16, 22)) > plot(hdl, tc, pch=ifelse(sex=="Nam", "M", "F")) > plot(hdl ~ tc, pch=16, main="Total cholesterol and HDL cholesterol with LOEWSS smooth function", xlab="Total cholesterol", ylab="HDL cholesterol", bty="l") > lines(lowess(hdl, tc, f=2/3, iter=3), col="red") > lipid <- data.frame(age,bmi,hdl,ldl,tc) > pairs(lipid, pch=16)

  19. Descriptive Statistics > mean(tc) [1] 5.414 > var(tc) [1] 1.962045 > sd(tc) [1] 1.40073 > summary(cong) sex age bmi hdl ldl Nam:22 Min. :42.00 Min. :17.00 Min. :0.633 Min. :0.700 Nu :28 1st Qu.:49.25 1st Qu.:20.00 1st Qu.:4.167 1st Qu.:2.650 Median :59.50 Median :22.00 Median :5.425 Median :3.050 Mean :57.64 Mean :21.38 Mean :5.333 Mean :3.292 3rd Qu.:63.75 3rd Qu.:23.00 3rd Qu.:6.545 3rd Qu.:4.100 Max. :80.00 Max. :25.00 Max. :9.110 Max. :6.000 tc tg Min. :3.000 Min. :0.700 1st Qu.:4.125 1st Qu.:1.325 Median :5.650 Median :2.050 Mean :5.414 Mean :2.176 3rd Qu.:6.200 3rd Qu.:2.700 Max. :8.300 Max. :6.200

  20. Descriptive Statistics by Group, t-test > tapply(tc, list(sex), mean) Nam Nu 5.554545 5.303571 > t.test(tc ~ sex, data=cong) Welch Two Sample t-test data: tc by sex t = 0.6283, df = 46.09, p-value = 0.5329 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.553024 1.054972 sample estimates: mean in group Nam mean in group Nu 5.554545 5.303571

  21. Wilcoxon test > wilcox.test(tc ~ sex, data=cong) Wilcoxon rank sum test with continuity correction data: tc by sex W = 355, p-value = 0.3629 alternative hypothesis: true mu is not equal to 0 Warning message: cannot compute exact p-value with ties in: wilcox.test.default(x = c(4, 7.7, 5, 5.9, 6.1, 5.9, 4.1, 4, 6.9,

  22. Test for Two Proportions > fracture <- c(7, 20) > total <- c(100, 110) > prop.test(fracture, total) 2-sample test for equality of proportions with continuity correction data: fracture out of total X-squared = 4.8901, df = 1, p-value = 0.02701 alternative hypothesis: two.sided 95 percent confidence interval: -0.20908963 -0.01454673 sample estimates: prop 1 prop 2 0.0700000 0.1818182

  23. Comparison of Multiple Proportions > female <- c( 4, 43, 22, 0) > total <- c(8, 60, 30, 2) > prop.test(female, total) 4-sample test for equality of proportions without continuity correction data: female out of total X-squared = 6.2646, df = 3, p-value = 0.09942 alternative hypothesis: two.sided sample estimates: prop 1 prop 2 prop 3 prop 4 0.5000000 0.7166667 0.7333333 0.0000000 Warning message: Chi-squared approximation may be incorrect in: prop.test(female, total)

  24. Linear Regression Analysis > age <- c(46,20,52,30,57,25,28,36,22,43,57,33,22,63,40,48,28,49) > bmi <-c(25.4,20.6,26.2,22.6,25.4,23.1,22.7,24.9,19.8,25.3,23.2, 21.8,20.9,26.7,26.4,21.2,21.2,22.8) > chol <- c(3.5,1.9,4.0,2.6,4.5,3.0,2.9,3.8,2.1,3.8,4.1,3.0, 2.5,4.6,3.2, 4.2,2.3,4.0) > data <- data.frame(age, bmi, chol) > plot(chol ~ age, pch=16)

  25. Coefficient of Correlation > cor.test(age, chol) Pearson's product-moment correlation data: age and chol t = 10.7035, df = 16, p-value = 1.058e-08 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.8350463 0.9765306 sample estimates: cor 0.936726

  26. Simple Linear Regression Analysis > reg <- lm(chol ~ age) > summary(reg) Call: lm(formula = chol ~ age) Residuals: Min 1Q Median 3Q Max -0.40729 -0.24133 -0.04522 0.17939 0.63040 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.089218 0.221466 4.918 0.000154 *** age 0.057788 0.005399 10.704 1.06e-08 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.3027 on 16 degrees of freedom Multiple R-Squared: 0.8775, Adjusted R-squared: 0.8698 F-statistic: 114.6 on 1 and 16 DF, p-value: 1.058e-08

  27. Multiple Linear Regression Analysis > mreg <- lm(chol ~ age + bmi) > summary(mreg) Call: lm(formula = chol ~ age + bmi) Residuals: Min 1Q Median 3Q Max -0.3762 -0.2259 -0.0534 0.1698 0.5679 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.455458 0.918230 0.496 0.627 age 0.054052 0.007591 7.120 3.50e-06 *** bmi 0.033364 0.046866 0.712 0.487 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.3074 on 15 degrees of freedom Multiple R-Squared: 0.8815, Adjusted R-squared: 0.8657 F-statistic: 55.77 on 2 and 15 DF, p-value: 1.132e-07

More Related