1 / 23

741 Op-Amp

741 Op-Amp. Where we are going:. Why do this?. V out. Higher Linearity Possible Stability. V in. Circuit Element. Why not do this? g m. GND. GND. Lower Bandwidth Higher Noise / D f. Source Degeneration. V out. V in. GND. GND. Source Degeneration. V out.

stian
Download Presentation

741 Op-Amp

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 741 Op-Amp Where we are going:

  2. Why do this? Vout • Higher Linearity • Possible Stability Vin Circuit Element Why not do this? gm GND GND • Lower Bandwidth • Higher Noise / Df Source Degeneration Vout Vin

  3. GND GND Source Degeneration Vout Neglect VA of Q1 and assume matched devices: Vout I Vin I = Ieo e V1 /UT = Ieo e(Vin - V1 + Vout/Av )/UT Vin V1 2 V1 = Vin + Vout / Av Q1 I = Ieo e(Vin + Vout/Av )/(2 UT) A similar result for MOSFETs

  4. Vdd GND Common Emitter Common Emitter / Common Source Amplifies the input signal at the output Ibias Assuming an ideal current source: 100mA Vout Ibias = Ico eVin/UT eVout /VA Vin Vout = -VA ln(Ibias/Ico) + - (k VA / UT) Vin

  5. Common Drain Vdd Amplifies the input signal at the output 100pA Ibias Ibias = Ibias ekDVin/UT eDVout/VA Vout Vin DVout = - (k VA / UT) DVin GND Input conductance = 0

  6. Vout Common Drain We must account for the other current source: Vdd Ibias Id = Ibias e-DVout/VAp = Ibias ekDVin/UT eDVout/VAn Vb M6 Vin M7 DVout = - (k (VAn // VAp) UT) DVin GND

  7. Vout Common-Drain: Amplifier Measurements Vdd V1 M6 Ibias Mb M7 GND GND

  8. Common Drain What about above-threshold operation: Vdd Operating region decreases (Vout > Vin - VT) Derive using quadratic functions: 100mA Ibias Vout Ibias = (K/2) ( Vin - VT )2 (1 + (Vout/VA) ) Vin Vout = VA( - 1) GND Amplifies the input signal at the output

  9. Common E / S: Resistive Load

  10. High-Gain Amplifier Experiments Load-line Analysis

  11. Vdd Common Base Common Base / Common Gate Amplifies the input signal at the output (non-inverting gain) Ibias Assuming an ideal current source: 100mA Vout Ibias = Ico e (Vb-Vin)/UT eVout /VA Vb Vout = -VA ln(Ibias/Ico) + (VA / UT) Vin - (VA / UT) Vb Vin Gain = VA / UT = Av

  12. Common Gate Vdd Using a subthreshold MOSFET : 100pA Ibias = Io e (kVb-Vin)/UT eVout /VA Ibias Vout = -VA ln(Ibias/Io) + (VA / UT) Vin - (k VA / UT) Vb Vout Vb Gain = VA / UT = Av Vin Problem: Large input current

  13. Common G: Resistive Load

  14. Vdrain Input resistance of common-gate is low Source is nearly fixed if connected to the drain of a transistor Vin V1 Vgate GND Cascode Circuits Use a common-gate/base transistor to: 1. Improve the output resistance of another transistor. 2. Reduce the Gate-to-Drain capacitance effect of another transistor.

  15. Cascode Circuits Vdrain Vdrain Vbias Vgate GND V1 Vgate Idrain = Io e kVgate/UT e kVbias /VA eVdrain / (Av VA ) GND Idrain = Io e (kVbias-V1)/UT eVdrain /VA = Io e kVgate/UT eV1 /VA V1 ~ kVbias - kVgate + (UT/VA) Vdrain Drain is fixed Fixes the voltage at V1 or isolates V1 from the output

  16. Vdd Cascode Common-Drain Amp One Pole V1 High Output Resistance / DC Gain biasp Vout Ibias biasn Vb Mb GND GND

  17. BJT Cascode Configuration

  18. MOS Cascode Circuit

  19. BJT - CMOS Cascode Circuits Preserve High-gm/I

  20. Cascade Configurations

  21. Cascade Connection: Rout

  22. BJT-MOS Cascades A good way to get zero base current….

  23. Cascades: More stuff

More Related