1 / 60

Enantioselective Radical Reactions

Enantioselective Radical Reactions. Justin Potnick March 12, 2004. Outline. Introduction to Radical Reactions Atom Transfers Reductive Alkylations Fragmentations Tandem Addition-Trapping Reactions Oxidations Summary. Introduction. Typical radical reactions go through 3 steps

Download Presentation

Enantioselective Radical Reactions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Enantioselective Radical Reactions Justin Potnick March 12, 2004

  2. Outline • Introduction to Radical Reactions • Atom Transfers • Reductive Alkylations • Fragmentations • Tandem Addition-Trapping Reactions • Oxidations • Summary

  3. Introduction • Typical radical reactions go through 3 steps • Generation of radical from non-radical species • Propagation/Chain transfer process • Termination Initiation Propagation Termination Precursor Radical-1 Radical-2 Neutral Product Chain transfer

  4. Radical Properties x • Short lived, highly reactive species; difficult to use • Proceed under mild, neutral conditions • Radical reactions have been performed in aqueous media • Compatible with many functional groups, inert toward -OH or -NH • Early, reactant-like TS‡ allows for prediction of product stereochemistry from ground state structure C. P. Jasperse, D. P. Curran, T. L. Fevig, Chem Rev.1991, 91, 1237

  5. Creating Selectivity • Chiral source must be present during reaction • Chiral source bound to achiral substrate (complex-controlled) • Chiral source bound to the reagent (reagent-controlled) • •

  6. Outline • Introduction to Radical Reactions • Atom Transfers • Reductive Alkylations • Fragmentations • Tandem Addition-Trapping Reactions • Oxidations • Summary

  7. Atom Transfer Reactions • • • Typically involve transfer of a hydrogen or halogen atom • Transfer of atom from a chain-transfer agent to a radical species to generate another radical • Chiral Lewis Acid • Chiral Reagent •

  8. Enantioselective Atom Transfer • Lewis acids have been used to enhance and catalyze radical reactions • Conjugate addition followed by selective H-atom transfer • Urabe, H.; Yamashita, K.; Suzuki, K.; Kobayashi, K.; Sato, F. J. Org. Chem.1995, 60, 3576

  9. Radical Initiator • Trialkylboranes give free alkyl radicals upon treatment with oxygen • Et3B/O2 works as a radical initiator even at -78 C • Advantageous for stereoselective reactions: improved selectivities at lower temperatures • Alternate methods of radical generation typically involve high temperatures Et3B/O2 • • • • Ollivier, C.; Renaud, P. Chem. Rev.2001,101, 3415-3434

  10. Enantioselective Atom Transfer • Selectivity was dependent on concentration of reactants • Low ee at low concentration • Suggests uncomplexed radical reacting to give racemic product in competing background reaction Murakata, M.; Tsutsui, H.; Takeuchi, N.; Hoshino, O. Tetrahedron1999, 55, 10295

  11. Acyclic Systems • With previous cyclic system, selectivity is easier to control • Acyclic systems require more control • The complexing chiral group must be fixed relative to the prochiral center • The chiral group must shield one face of the radical or alkene • Reactivity of the complex must exceed reactivity of the free substrate • • • Murakata, M.; Tsutsui, H.; Takeuchi, N.; Hoshino, O. Tetrahedron1999, 55, 10295

  12. Rotamer Control • Rotamer control in radical transformations is important for selectivity • Achiral auxiliaries can provide a handle to control rotamers of acyclic substrates • Oxazolidinone templates were chosen based on success of chiral auxiliaries in Lewis acid promoted free radical transformations • S-cis favored due to A1,3 strain No rotamer control Rotamer control • • • • • • • Sibi, M. P.; Porter, N. A. Acc. Chem. Res.1999, 32, 163

  13. Acyclic Rotamer Control Sibi, M. P.; Asano, Y.; Sausker, J.B. Agnew. Chem., Int. Ed.2001, 40, 1293

  14. Conjugate Additions to -Methacrylates • • • • Sibi, M. P.; Sausker, J. B., J. Am. Chem. Soc. 2002,124, 984-991.

  15. Achiral Napthosultam Template • aPh3SnH was used as H-atom donor Sibi, M. P.; Sausker, J. B., J. Am. Chem. Soc. 2002,124, 984-991.

  16. Predicted Transition State to Account for Selectivity • Attack from re face Attack occurs before any rotamer interconversion: precursor geometry imparts on product stereochemistry S-trans rotamer Sibi, M. P.; Sausker, J. B., J. Am. Chem. Soc. 2002,124, 984-991.

  17. -Substituted β-Amino Acids Sibi, M. P.; Patil, K. Agnew. Chem., Int. Ed.2004, 43, 1235

  18. Reasons for selectivity • Radical reactions proceed through an early transition state → resembles starting complex • H-atom transfer occurs rapidly on rotamer conformation timescale • Atom transfer or radical addition to a neutral molecule proceed at high rates: approximately 104-108 dm3M-1s-1 • Geometry of starting material affects product stereochemistry • Exploitation of relatively slow conformation changes is possible Sibi, M. P.; Manyem, S.; Zimmerman, J., Chemical Reviews 2003,103, 3263-3295.

  19. Memory of Chirality • Atom transfer occurs at a high rate • Dependent on temperature and concentration of H-atom donor • • Buckmelter, A. J.; Kim, A. I.; Rychnovsky, S. D., J. Am. Chem. Soc. 2000,122, 9386-9390.

  20. Chiral Reagents Reduction of -bromoketones Reduction of -bromoesters Hydrometallation of methyl methacrylate Nanni, D.; Curran, D. P. Tetrahedron: Asymmetry1996, 7, 2417. Blumenstein, M.; Schwarzkopf, K.; Metzger, J. O., Angew. Chem., Int. Ed. Eng. 1997,36, 235-236. Curran, D. P.; Gualtieri, G., Synlett 2001, 1038-1041.

  21. Hydrosilylation of Alkenes • • • Cai, Y.; Roberts, B. P.; Tocher, D. A., J. Chem. Soc. Perkin Trans. 1 2002, 1376-1386. Haque, M. B.; Roberts, B. P., Tetrahedron Lett. 1996,37, 9123-9126. Haque, M. B.; Roberts, B. P.; Tocher, D. A., J. Chem. Soc., Perkin Trans. 1 1998, 2881-2890.

  22. Halogen Atom Transfer • • Addition of R-X to C-C double bond • Good atom economy • Product has halide group, allowing for further functionalization • Reaction can be slow for R ≠ EWG • • * Mero, C. L.; Porter, N. A., J. Am. Chem. Soc. 1999,121, 5155-5160.

  23. Atom Transfer Radical Cyclizations • • Transfer of halogen atom from one C to another followed by ring formation • Halogen atom is retained in the product • Can be promoted or catalyzed by Lewis acids • • • •

  24. Radical Cyclizations • • a MS 4Å added; b ratio of 2b:2c; c ee for 2b/2c Yang, D.; Gu, S.; Yan, Y.-L.; Zhu, N.-Y.; Cheung, K.-K., J. Am. Chem. Soc. 2001,123, 8612-8613.

  25. Tandem Atom Transfer Cyclizations • Sets four stereocenters in one step with a single diastereomer observed Yang, D.; Gu, S.; Yan, Y.-L.; Zhao, H.-W.; Zhu, N.-Y., Angew. Chem. Int. Ed. 2002,41, 3014-3017.

  26. Outline • Introduction to Radical Reactions • Atom Transfers • Reductive Alkylations • Fragmentations • Tandem Addition-Trapping Reactions • Oxidations • Summary

  27. Reductive Alkylations • Addition to carbon-carbon or carbon-heteroatom multiple bonds, followed by trapping with an H-atom source • Conjugate additions • Addition to imines • Cyclizations • Catalysis is possible with the use of Lewis acids • •

  28. Conjugate Additions Sibi, M. P.; Ji, J., J. Am. Chem. Soc. 1996,118, 9200. Sibi, M. P.; Ji, J., J. Org. Chem. 1997,62, 3800.

  29. Conjugate Additions Sibi, M. P.; Ji, J., J. Am. Chem. Soc. 1996,118, 9200. Sibi, M. P.; Ji, J., J. Org. Chem. 1997,62, 3800.

  30. Achiral Additives • Achiral additives were used in an attempt to increase selectivity Murakata, M.; Tsutsui, H.; Hoshino, O., Org. Lett. 2001,3, 299-302.

  31. Pyrazole Template Sibi, M. P.; Shay, J. J.; Ji, J., Tetrahedron Lett. 1997,38, 5955-5958.

  32. Other Lewis Acids • Lanthanide Lewis acids can be used Sibi, M. P.; Manyem, S., Org. Lett. 2002,4, 2929-2932. Sibi, M. P.; Petrovic, G. Tetrahedron: Asymmetry2003, 14, 2879.

  33. Aldol-Type Products • • • • β-Alkoxy groups prone to elimination with ionic nucleophiles • Nucleophilic radical addition avoids this Sibi, M.P.; Zimmerman, J.; Rheault, T. Angew. Chem. Int. Ed.2003, 42, 4521.

  34. Addition to Imines Miyabe, H.; Ushiro, C.; Ueda, M.; Yamakawa, K.; Naito, T., J. Org. Chem. 2000,65, 176-185. Halland, N.; Anker Jorgensen, K., J. Chem. Soc. Perkin Trans. 1 2001, 1290-1295. Friestad, G. K.; Shen, Y. H.; Ruggles, E. L., Angew. Chem. Int. Ed. 2003,42, 5061-5063.

  35. Enantioselective 5-Exo Cyclization Hiroi, K.; Ishii, M., Tetrahedron Lett. 2000,41, 7071-7074. • Cyclization using “memory of chirality” • Curran, D. P.; Liu, W.; Chen, C. H.-T., J. Am. Chem. Soc. 1999,121, 11012-11013.

  36. Outline • Introduction to Radical Reactions • Atom Transfers • Reductive Alkylations • Fragmentations • Tandem Addition-Trapping Reactions • Oxidations • Summary

  37. Fragmentation Reactions • Addition of radical to a neutral molecule • β-elimination of resultant radical to generate terminal olefin • • • X = halide; Z = Sn(Bu)3, Si(Me)3, Si(Si(Me)3)3

  38. Fragmentation Reactions Porter, N. A.; Wu, J. H.; Zhang, G.; Reed, A. D., J. Org. Chem. 1997,62, 6702-6703. Fhal, A.-R.; Renaud, P., Tetrahedron Lett. 1997,38, 2661-2664.

  39. Fragmentation Reactions Porter, N. A.; Feng, H.; Kavrakova, I. K., Tetrahedron Lett. 1999,40, 6713-6716.

  40. Fragmentation Reactions Porter, N. A.; Feng, H.; Kavrakova, I. K., Tetrahedron Lett. 1999,40, 6713-6716.

  41. Fragmentation Reactions of -Iodolactones • Single point binding chiral Lewis acid Murakata, M.; Jono, T.; Mizuno, Y.; Hoshino, O., J. Am. Chem. Soc. 1997,119, 11713-11714. Murakata, M.; Jono, T.; Hoshino, O., Tetrahedron: Asymmetry 1998,9, 2087-2092.

  42. Allylation Using an Acyclic Template •• •• •• •• •• • Hiroi, K.; Ishii, M., Tetrahedron Lett. 2000,41, 7071-7074.

  43. Outline • Introduction to Radical Reactions • Atom Transfers • Reductive Alkylations • Fragmentations • Tandem Addition-Trapping Reactions • Oxidations • Summary

  44. Tandem Radical Reactions • Addition of a radical to a neutral molecule followed by trapping of the resultant radical • Potential of forming two stereogenic centers • Downside is possibility of reactive byproduct formed • • • • Z = Sn(Bu)3, Si(Me)3, Si(Si(Me)3)3

  45. Enantioselective Tandem Addition Wu, J. H.; Radinov, R.; Porter, N. A., J. Am. Chem. Soc. 1995,117, 11029-30.

  46. Tandem Reaction vs. Fragmentation • • ee of product • Higher selectivity of tandem reaction pathway may be due to catalysis of background reaction by tin bromide byproduct Wu, J. H.; Zhang, G.; Porter, N. A., Tetrahedron Lett. 1997,38, 2067-2070.

  47. Lanthanide Lewis Acids • Lanthanide triflates are generally air and moisture stable • Strong Lewis acidity • Ionic radii of lanthanide metals increase in a small and regular manner: easy to modify chiral environment Sibi, M. P.; Manyem, S.; Subramaniam, R. Tetrahedron2003, 59, 10575

  48. Allylation of an -Sulfonyl Radical Ar = 2-(1-benzylbenzimidazolyl) • • s-cis 0 kcal/mol s-trans 2.5 kcal/mol Watanabe, Y.; Mase, N.; Furue, R.; Toru, T. Tetrahedron Lett.2001, 42, 2981

  49. Control of  and β carbon selectivity X = O, R = Ph 2 X = O, R = CH33 X = CH2, R = CH34 Sibi, M. P.; Chen, J., J. Am. Chem. Soc. 2001,123, 9472-9473.

  50. Control of  and β carbon selectivity X = O, R = Ph 2 X = O, R = CH33 X = CH2, R = CH34 Sibi, M. P.; Chen, J., J. Am. Chem. Soc. 2001,123, 9472-9473.

More Related