160 likes | 172 Views
Biochemical characteristics of peat organic matter and distribution of testate amoebae patterns in naturally regenerating cutover Sphagnum peatlands of the Jura Mountains. F. Laggoun-Defarge 1 , E. Mitchell 2,3 , D. Gilbert 4 , B. Warner 5 , L. Comont 1 , J.-R. Disnar 1 & A. Buttler 3,4.
E N D
Biochemical characteristics of peat organic matter and distribution of testate amoebae patterns in naturally regenerating cutover Sphagnum peatlands of the Jura Mountains F. Laggoun-Defarge1, E. Mitchell2,3, D. Gilbert4, B. Warner5, L. Comont1, J.-R. Disnar1 & A. Buttler3,4 1Earth Sc. Inst., CNRS-Univ. Orleans, France 2Univ. Alaska, Anchorage, USA 3EPFL & WSL-AR, Lausanne, Switzerland 4Univ. Franche-Comte, Besançon, France 5Univ. Waterloo, Ontario, Canada
Abandoned peatlands Peatlands designated for restoration Restablish primary production Long-term C-sequestration ? Which vegetation to promote ? Which related diversity ? CH4CO2 CO2 CH4 REGENERATED BOGS Starting conditions for potential restoration: Water table ? Chemical properties ? CUTOVER BOGS Which microbial communities and processes ? Fate of organic matter ? Biomarkers ? RECIPE (EC FP5RTD) “Reconciling commercial exploitation of peat with biodiversity in peatland ecosystems”
France N Switzerland RECIPE: cutover Sphagnum-dominated peatlands that are being regenerating studied sites: range of regeneration stages La chaux d’Abel/CH
The sites: La Chaux d’Abel wet fen early regeneration stage non exploited area: reference 0-3 cm amoebae 1 m profiles: 3 X 8 depths • OM analyses : • C, N • Micromorphology • Sugars • bacteria dry bog later regeneration stage
SPECIFIC OBJECTIVES • determine biochemical characteristics of peat organic matter • determine biodiversity of microorganisms (testate amoebae) • Identification of bioindicators of environmental changes • Clues for the functioning of the system
C/N ratios and microscopic counting (1/3) Regenerating litter “Old” catotelm peat La Chaux d’Abel / poor fen (early regeneration stage) CA.1Sphagnum & Polytrichum
C/N ratios and microscopic counting (2/3) La Chaux d’Abel / bog (later regeneration stage) CA.5Sphagnum & Polytrichum Regenerating litter “Old” catotelm peat
C/N ratios and microscopic counting (3/3) La Chaux d’Abel (non exploited area) Vascular plant remains Higher degradation Drainage phase ? Vascular plant remains Higher degradation Drainage phase ?
% ERIOPHORUM Xylose Arabinose Xyl Ara ERIOPHORUM % POLYTRICHUM Man H Mannose H POLYTRICHUM % S. fallax % Rhamnose Galactose S. rubellum SPHAIGNES Gal Gal Rhm Rhm Living plants Markers of organic sources(sugar analyses)
sugar analyses La Chaux d’Abel / regenerated bog Xylose Arabinose ERIOPHORUM POLYTRICHUM Mannose H Rhamnose Galactose SPHAIGNES Total sugar content in CA.5 [mg/g] % Mannose % Arabinose et Xylose Polytrichum- dominated peat Regenerating litter vascular plant- dominated peat higher degradation depth (cm)
sugar analyses La Chaux d’Abel / non-exploted area Xylose Arabinose ERIOPHORUM POLYTRICHUM Mannose H Rhamnose Galactose SPHAIGNES Total sugar content in CA.6 [mg/g] % Xylose % Man, Ara,Fuc, Rib % Glucose depth (cm)
NON EXPLOITED Zone Abondance b/g.dry sampl. Biomass mgC.g DEPTH (cm) CA 6 bacteria counting (La Chaux d’Abel) Taille échantillon de départ density of bacteria/g fresh peat BIOMASS Carbon Biovolume REGENERATED Zone Abondance b/g.dry sampl. Biomass mgC.g Regenerating litter « Old » peat DEPTH (cm) Drainage phases CA 5
Testate amoebae • A dominant group of protozoa in Sphagnum-dominated peatlands. • They are numerous & diverse. • Like other microorganisms they have a higher turnover rate than most other groups of organisms usually used as bioindicators.
Testate amoebae Numerical analyses • Existing database from the Jura Mountains (Mitchell et al., 1999) • used to derive transfer functions for pH and the depth of water table (DWT) • These transfer functions used to infer pH and DWT from the regeneration • sequence samples • A species x samples matrix created with these 2 data (only common species • to both data sets were kept) • A conservative taxon. approach used & relative abondance of each species • in each sample calculated • Program WACALIB used to determine ecological optima of species • and infer pH & DWT values of the samples • Inferred pH vs inferred DWT for the regeneration sequence • => How these 2 variables change along the sequence
5.07 CA-2-2 H y a l o s p h e n i a p a p i l i o CA-1-3 CA1&2 N e b e l a t i n c t a CA-2-3 A s s u l i n a m u s c o r u m CA-1-1 CA-1 A m p h i t r e m a f l a v u m CA-1-2 E u g l y p h a c i l i a t a C o r y t h i o n d u b i u m CA-2-1 CA-4-2 N e b e l a t i n c t a v a r . m a j o r A s s u l i n a s e m i n u l u m 4.80 N e b e l a m i l i t a r i s P h r y g a n e l l a a c r o p o d i a CA-2 c o m p r e s s a E u g l y p h a H e l e o p e r a s y l v a t i c a CA-4 pH H y a l o s p h e n i a e l e g a n s CA-6-3 CA 4.53 CA-4-3 -4 CA-4-1 CA-5-1 CA-5 CA-5-2 CA-5-3 4.26 CA-5&6 CA-6-1 CA -6 CA-6-2 3.99 10.00 16.24 22.48 28.72 34.95 Depth to the water table [cm] Community structure in the regeneration sequence
Conclusions • A continuous trend from wet to drier / more acidic conditions • thanks to testate amoebae communities (from Sphagnum mosses) • Similar approach can be applied: establishment of a stratigraphy • communities in peat cores to monitor changes through time • OM composition of regenerating litters is similar to that of intact zone • (C/N: 60-80) • - early regeneration: homogeneous (mainly Sphagnum remains) • - late regeneration: heterogeneous (Sph. & Polyt. remains, AOM), • better preservation of monosaccharides - Specific indicators of organic sources identified from sugar analyses: - Reconstitution of different plant successions - higher degradation of OM associated with vascular plant settlement