1 / 24

Oncogenic CSF3R  mutations in chronic  neutrophilic  leukemia and atypical CML .

Oncogenic CSF3R  mutations in chronic  neutrophilic  leukemia and atypical CML . N Engl J Med. 2013 May 9; 368:1781 Speaker: CR 呂學儒 醫師 Moderator: VS 蕭樑材醫師. Definition of CNL and atypical CML. Leukocytosis and hypercellularity of BM, predominantly of granulocytic cell

sukey
Download Presentation

Oncogenic CSF3R  mutations in chronic  neutrophilic  leukemia and atypical CML .

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. OncogenicCSF3R mutations in chronic neutrophilic leukemia and atypical CML.OncogenicCSF3R mutations in chronic neutrophilic leukemia and atypical CML. N Engl J Med. 2013 May 9;368:1781 Speaker: CR 呂學儒醫師 Moderator: VS 蕭樑材醫師

  2. Definition of CNL and atypical CML Leukocytosis and hypercellularity of BM, predominantly of granulocytic cell Absence Ph chromosome , absence of rearrangements of PDGFR A/B and FGFR1 CNL: neutrophils in both periphreal and BM blood (segmented neutrophils and band forms > 80% of WBC) Atypical CML : granulocytic dysplasia, increased neutrophil precursors in both peripheral and BM blood (typically, ≥10% of white cells) Hematology Am Soc HematolEduc Program. 2011;2011:250-6

  3. Clinical, hematological and cytogenetic characteristics of aCML • Background: • an infrequent chronic MPN • leukocytosis, absence of Ph/BCR-ABL, marked myeloid dysplasia • immature granulocytes > 15%, some with absolute monocytosis, D/D CMML • Result: • median age: 65 years • 55% had moderate anemia and 36% had thrombocytopenia • Most with marked dysplasia, particularly in the granulocytic lineage • Cytogenetic data: trisomy 8, 5q-, 13q-, 17p-, 12q-, and 11q-, t(6;8)(p23;q22) • median survival: 14 months Ann Oncol. 2000;11:441

  4. Histopathology of peripheral blood and BM of CNL N Engl J Med. 2013;368:1781

  5. G-CSF and its receptor in myeloid malignancy • Granulocyte colony-stimulating factor(G-CSF/CSF3): • major regulator of neutrophil production • granulopoiesis during infections and enhances multiple neutrophilfunctions • inducing proliferation and survival of myeloid progenitor cells • The receptor for CSF3 (CSF3R) • 17 exons and its protein 813 amino acids • Activation with Jak/STAT, Ras/Raf/MAP kinase, and PKB/Aktpathways • Colony-stimulating factor 3 receptor gene (CSF3R) • mapping to chromosome 1p • provides the proliferative and survival signal for granulocytes • contributes to their differentiation and function • CSF3R mutations: • severe congenital neutropenia, secondary developed at AML (1%) Blood. 2010;115:5131 Leukemia 2013. doi: 10.1038

  6. Use of Hematopoietic Growth Factors in the Survival and Differentiation of Hematopoietic Cells NEJM2013;368:1131

  7. Hematopoietic Growth Factor Signaling NEJM2006;354:2034

  8. Sequential gain of mutations in severe congenital neutropenia (SCN) progressing to acute myeloid leukemia (AML) Blood. 2012;119:5071

  9. Model for Activation and Signaling of CSF3R MutationsTwo different classes of CSF3R mutations N Engl J Med. 2013;368:1781

  10. The mutations in CSF3R are a defining molecular abnormality of CNL/atypical CML Testing for CSF3R mutations could aid in the diagnosis of these diseases 5 patients: both membrane proximal and truncation mutations AML(SCN progression): Q741X mutation ETP-T-ALL: one of T618I

  11. CSF3R deep sequencing CNL, CSF3R(S783fs mutation)

  12. Dependence on SRC Family-TNK2 or JAK Kinases(Truncation mutations) CNL, CSF3R(S783fs mutation) for 66 kinase inhibitor Hypersensitive to dasatinib Insensitive to JAK kinase inhibitors IC50: 50% inhibitory concentration; SFK: SRC family kinase; TNK2: tyrosine kinasenonreceptor 2 small interfering RNAs (siRNAs) silencing of TNK2 and FGR (an SFK) inhibited by dasatinib

  13. Dependence on Src Family-TNK2 or JAK Kinases(membrane proximal mutations) CLL, CSF3R(T618I mutation) for 66 kinase inhibitor Insensitive to dasatinib Sensitive to JAK kinase inhibitors

  14. Two different classes of CSF3R mutations • Truncation mutations(S783fs) • Dysregulation of SRC family–TNK2 kinases • sensitivity to dasatinib but not to JAK kinase inhibitors • Membrane proximal mutations(T618I) • Dysregulation of JAK family kinases • sensitivity to JAK kinase inhibitors but not to dasatinib

  15. Distinct signaling-pathway dysregulation To test the relative transforming capacity Expressing wild-type CSF3R, membrane proximal mutations, or truncation mutations Infected with murine retrovirus Over a 10-day period CSF3R mutations were capable to induce transformation Membrane proximal mutations faster

  16. The potential signalingdifferences between the two classes of CSF3R • Immunoblot analysis for JAK–STAT phosphorylation • T618I mutant induced high levels of STAT3 -JAK2 phosphorylation; S783fs mutant was low • Two classes of CSF3R mutations have different transformation potential and downstream signaling consequences

  17. Use of tyrosine kinase inhibitorsthe sensitivities of CSF3R, mice

  18. Clinical efficacy of Ruxolitinib in a patient with CSF3R T618I

  19. CNL vs.atypical CML • CNL and atypical CML • separate neoplasms by the WHO • But challenging for clinicians and hematopathologists • The categorization relies on arbitrary thresholds • Total WBC ( ≥25,000 for CNL; ≥13,000 for atypical CML) • immature granulocytes (<10% for CNL; ≥10% for atypical CML) • the presence or absence of dysgranulopoiesis (absent in CNL and characteristic of atypical CML) • CSF3R mutations : • a biologically unifying feature of CNL and atypical CML • the molecular classification of MPD and MDS/MPD

  20. Sequenced CSF3Rin 54 cases • CNL (n=35) or atypical CML(n=19) • WHO defined: 12 patients diagnosed CNL; 5 monoclonal gammopathy (MG)-associated CNL; 9 aCML • 14 CSF3R mutations detected in 13 patients • CSF3R T618I is the most mutation: 10/13 • CSF3R T618I frequency: 83% (10/12) in WHO-defined CNL • CSF3R mutations not in aCML or MG-associated CNL • CSF3RT618I also absent in PMF(n=76) and CMML(n=94) • CSF3RT618I • highly sensitive and specific molecular marker for CNL • should be incorporated into current diagnostic criteria Leukemia2013. doi: 10.1038

  21. Leukemia 2013. doi: 10.1038

  22. Genetically Informed Therapy in LeukemiaJerald Radich, M.D.Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance • Julia E. Maxson • A TK mutation which play a major role in myeloid cancer • Identified a novel mutations in CSF3R • Tested in vitro with kinase inhibitors • Different types sensitivity to different therapeutic agents • Treated a patient with dramatic improved in WBC, Neutrophil, and PLT • Therapeutic benefit in these rare disorders • power of genetic screening to uncover new potential drug targets • This is how we will beat cancer, one gene, one disease at a time. NEJM 2013;368:1838

  23. Take home message • CSF3R mutations: identified in >50% CNL/aCML • Consider as a diagnostic criteria • The oncogenicCSF3R mutations • Truncation mutations or membrane proximal mutations • sensitivity to inhibitors of SRC family–TNK2 and JAK kinases

  24. Thank you for your attention

More Related