150 likes | 241 Views
Gases, Liquids and Solids:. Swimmers (and all Canadians who have been rescued by the Coast Guard!) know that the human body is slightly less dense than water but rather more dense than air.
E N D
Gases, Liquids and Solids: • Swimmers (and all Canadians who have been rescued by the Coast Guard!) know that the human body is slightly less dense than water but rather more dense than air. • Liquids and solids (high density) have small molar volumes. Gases have much larger molar volumes at “normal” temperatures and pressures. Gases are “easily” compressed!
Condensed Phases and Gases at “Normal” Temperatures and Pressures • Condensed phases (solids and liquids) have relatively small molar volumes and “high” densities. • Gases have relatively high molar volumes and “low” densities • Simple Explanation – in condensed phases molecules are “touching” each other – no “empty” space.
Gases at “Normal” Temperatures and Pressures • Gases are mostly empty space – and are thus easily compressed. This is not true at very high P and low T. (Demonstration with dry ice!) • Gases at low pressure can be condensed if subjected to a higher (external) pressure. Gases at high pressure will expand if the external pressure is reduced (propane barbecue). • There are many(!) pressure units.
Pressure Units • By definition: Pressure = Force/Area • “Old” units for P: lb.in-2, mm Hg or torr • Modern or SI pressure units • P = Force/Area = N/m2 = kg.m s-2/m2 = Pascal • Standard atmospheric pressure = 101.325 kPa • 101.325 kPa = 1.01325 x 105 Pa (usual metric abbreviations) • We often measure atmospheric pressure using a barometer containing Hg or another liquid.
The gaseous state of three halogens (group 17) Figure 6-1 General Chemistry: Chapter 6
F W g x m g x V xd g x h x A xd = = = = = g x h xd P (Pa) = A A A A A Liquid Pressure liquid pressure is directly proportional to the liquid density and the height of the liquid column Figure 6-3 General Chemistry: Chapter 6
Measurement of atmospheric pressure with a mercury barometer Standard Atmospheric Pressure 1.00 atm, 101.325 kPa, 1.01325 bar, 760 torr, ~760 mm Hg Figure 6-4 General Chemistry: Chapter 6
Measurement of gas pressure with an open-end manometer Figure 6-5 General Chemistry: Chapter 6
1 Pa V 6-2 Simple Gas Laws PV = constant Relationship between gas volume and pressure – Boyle’s Law Figure 6-6 General Chemistry: Chapter 6
Boyle’s Law: • The equation PV = constant is valid for a fixed amount of a particular gas at a fixed temperature. One could take two points on the previous graph say (V1,P1) and (V2,P2) and write • P1V1 = P2V2 = constant or just P1V1= P2V2 • This expression can be used to predict, for example, how the volume of a gas will change when the pressure is altered or….? We call this an initial state → final state problem.
Class Example – Boyle’s Law: • At a particular temperature and a pressure of 242 kPa a sample of argon gas Ar(g) has a volume of 3.87 L. What will be the gas volume if the pressure is reduced to 88.6 kPa? (Mention the trichotomy axiom?)