1 / 25

Chapter 8 Group Velocity and Pulse Dispersion

Chapter 8 Group Velocity and Pulse Dispersion. Group Velocity. 考慮兩平面波沿 + z 軸傳播 , 振幅相同,但頻率有少許差異,分別為  +   與     。. 此二平面波疊加結果為. At t = 0. Group velocity 群速度. Phase velocity 相速度. 對一介質折射率為頻率的函數, n (  ),有. 因此. 代入. 以真空中波長. Group index n g 定義為. Negative dispersion.

sumi
Download Presentation

Chapter 8 Group Velocity and Pulse Dispersion

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 8Group Velocity and Pulse Dispersion

  2. Group Velocity 考慮兩平面波沿 +z 軸傳播, 振幅相同,但頻率有少許差異,分別為  +  與  。 此二平面波疊加結果為 At t = 0

  3. Group velocity 群速度 Phase velocity 相速度

  4. 對一介質折射率為頻率的函數,n(),有 因此 代入 以真空中波長 Group index ng定義為

  5. Negative dispersion vg (108 m/s) Positive dispersion 0 (m) Fig. 8.3 Variation of the group velocity vg with wavelength for pure silica.

  6. Example 8.1對純 silca,在波長0.5 m < 0 < 1.6 m區間,折射率對波長的關係可近似為以下經驗式 其中C0 = 1.451, a = 0.003, 0 以m為單位。 當0=1 m, 即群速度與相速度約有8%的差別。 對silca而言,當0 = 1.27 m,群速度為最高。小於1.27 m波長越短,群速度越小;反之,大於1.27 m,波長越長,群速度越小。

  7. 對silca而言,當0 = 1.27 m,群速度為最高。小於1.27 m波長越短,群速度越小;反之,大於1.27 m,波長越長,群速度越小。 對一脈衝而言,由於其不同波長分量,群速度均有些微不同,因此一般在介質中行進之脈衝會變寬broadening。 考慮一脈衝在一色散介質中行進 L 長度,所花時間為 因此脈衝寬化可表為 脈衝時間寬度由0 增加至 f,其中

  8. 由上式可知,脈衝寬化正比於行進長度L以及光源譜線寬度0。由上式可知,脈衝寬化正比於行進長度L以及光源譜線寬度0。 因此定義色散係數為, 其中0 單位為 m 若介質Dm > 0,稱為正色散positive dispersion 介質Dm < 0,稱為負色散negtive dispersion

  9. Example 8.2在第一代光通訊系統中,以0 = 0.85 m LED, 0 = 25 nm 當0 = 0.85 m 0 = 25 nm Example 8.3在第四代光通訊系統中,以0 = 1.55 m laser diode , 0 = 2 nm 當0 = 1.55 m 0 = 2 nm

  10. Group Velocity of a Wave Packet 考慮一平面波沿 +z 軸傳播 n為介質折射率 A為振幅,一般而言可為複數,即 因為電場不可能分佈於整個空間(總能量趨近無窮大),因此實際上,電場應表為波包

  11. 顯然,E(z = 0, t)為A()的Fourier transform。因此A() 為E(z = 0, t)的逆轉換。 Example 8.4 Gaussian Pulse. 考慮一Gaussian pulse 利用 In general, A() 可為複數,因此定義power spectral density S() = |A()|2

  12. 0 = 20 fs 0 = 1 m (0 = 61014)  稱為半高寬full width at half maximum (FWHM) 定義為當 = 0 /2, S()為其最大值之半。 此例中,FWHM滿足

  13. Propagation in a Non-Dispersion Medium 在非色散介質中,如真空,所有頻率的電磁波以相同速度行進。在真空中 代入上式 將Gaussian pulse 當z ct = constant,則 E(z, t) = constant Gaussian pulse以速度c無變形的行進。

  14. Fig. 8.5 Distortionless propagation of a Gaussian pulse in a non-dispersive medium.

  15. Propagation in a Dispersion Medium 電磁波在折射率為n()的色散介質中行進, 若A()為非常尖銳的峰值函數, 以Taylor series對 = 0展開 k()

  16. 若k()只考慮前兩項的貢獻(忽略), 令 =   0 phase term envelope term envelope項,以群速度vg無變形的移動

  17. 若將k() 近似式的三項全代入, 代入 將 Gaussian pulse 利用 where

  18. corresponding intensity distribution where Define pulse broadening

  19. Example 8.5 For pure silica,考慮 0 = 1.55 m的光線 對一100 ps的脈衝,在光纖中行進 2 km 對一10 fs的脈衝,在光纖中行進 4 mm a 10 fs pulse doubles its temporal width after propagating through a very small distance.

  20. The Chirping of the Dispersed Pulse where

  21. where The frequency chirp is

  22. Example 8.6考慮0 = 1.55 m的100 ps的脈衝,在純 silica 光纖中行進 2 km。 At (在脈衝的前緣) 因此此脈衝前緣頻率較高,此稱為“blue shifted” ,稱為“red shifted” 相對在 down-chirped pulse:脈衝前緣藍移,後緣紅移。 up-chirped pulse :脈衝前緣紅移,後緣藍移。

  23. Fig. 8.7 The temporal broadening of a 10 fs unchirped Gaussian pulse (0 = 1.55 m) propagating through silica. Notice that since dispersion is positive, the pulse gets down chirped.

  24. Fig. 8.8 If a down-chirped pulse is passed through a medium characterized by negative dispersion, it will get compressed until it becomes unchirped and then it will broaden again with opposite chirp.

More Related