450 likes | 652 Views
From Solar Neutrinos to B Physics : Flavor Oscillations at SNO and CDF. Peter Wittich University of PA March 1, 2002. What ties these two experiments together?. At the base, the same physics!. Flavor Oscillations. Wolfenstein: CKM. PDG “standard”: MNS. Solar Neutrino Problem. Solar Model.
E N D
From Solar Neutrinos to B Physics: Flavor Oscillations at SNO and CDF Peter Wittich University of PA March 1, 2002 P. Wittich
What ties these two experiments together? At the base, the same physics! P. Wittich
Flavor Oscillations Wolfenstein: CKM PDG “standard”: MNS P. Wittich
Solar Neutrino Problem Solar Model Experiments Bahcall Spectra Most plausible solution: flavor oscillations in n’s P. Wittich Bahcall
SNO Detector 2039 m underground1 in Sudbury, Ontario, in INCO's Creighton Mine #9 Penn Electronics Control Room ~ 10,000 PMTs on 16.8 m support (LBL!) 1 kT virgin D2O 7 kT H2O, ultrapure Urylon liner 1 6000 mwe P. Wittich
SNO Collaboration S. Gil, J. Heise, R.L. Helmer, R.J. Komar, T. Kutter, C.W. Nally, H.S. Ng, Y.I. Tserkovnyak, C.E. Waltham University of British Columbia J. Boger, R.L. Hahn, J.K. Rowley, M. Yeh Brookhaven National Laboratory R.C. Allen, G. Bühler,H.H. Chen* University of California at Irvine I. Blevis, F. Dalnoki-Veress, J. Farine, D.R. Grant, C.K. Hargrove, I. Levine, K. McFarlane, H. Mes, C. Mifflin, A.J. Noble, V.M. Novikov, M. O'Neill, M. Shatkay, D. Sinclair, M. Starinsky Carleton University G. Milton, B. Sur Chalk River Laboratories T.C. Andersen, K. Cameron, M.C. Chon, P. Jagam, J. Karn, J. Law, I.T. Lawson, R.W. Ollerhead, J.J. Simpson, N. Tagg, J.-X. Wang Univeristy of Guelph J. Bigu, J.H.M. Cowan, E.D. Hallman, R.U. Haq, J. Hewett, J.G. Hykawy, G. Jonkmans, S. Luoma, A. Roberge, E. Saettler, M.H. Schwendener, H. Seifert,R. Tafirout, C.J. Virtue Laurentian University Y.D. Chan, X. Chen, K.T. Lesko, A.D. Marino, E.B. Norman, C.E. Okada, A.W.P. Poon, A. Schuelke, A.R. Smith, R.G. Stokstad Lawrence Berkeley National Lab T.J. Bowles, S.J. Brice, M.R. Dragowsky, M.M. Fowler, A. Goldschmidt, A. Hamer, A. Hime, K. Kirch, G.G. Miller, J.B. Wilhelmy, J.M. Wouters Los Alamos National Laboratory J.D. Anglin, M. Bercovitch, W.F. Davidson, R.S. Storey* National Research Council of Canada J.C. Barton, S. Biller, R.A. Black, R.J. Boardman, M.G. Bowler, J. Cameron, B. Cleveland, X. Dai, G. Doucas, J. Dunmore, H. Fergani, A.P. Ferraris, K. Frame, H. Heron, N.A. Jelley, A.B. Knox, M. Lay, W. Locke, J. Lyon, S. Majerus, N. McCauley, G. McGregor, M. Moorhead, M. Omori, N.W. Tanner, R.K. Taplin, P. Thornewell,M. Thorman, P.T. Trent, D.L. Wark, N. West, J. Wilson University of Oxford E.W. Beier, D.F. Cowen, E.D. Frank, W. Frati, W.J. Heintzelman, P.T. Keener, J.R. Klein, C.C.M. Kyba, D.S. McDonald, M.S. Neubauer, F.M. Newcomer, S.M. Oser, V.L. Rusu, R.G. Van de Water,R. Van Berg, P. Wittich University of Pennsylvania R. Kouzes, M.M. Lowry Princeton University E.Bonvin, M.G. Boulay, Y. Dai, M. Chen, E.T.H. Clifford, , F.A. Duncan, E.D. Earle,H.C. Evans, G.T. Ewan, R.J. Ford, A.L. Hallin, P.J. Harvey, R. Heaton, J.D. Hepburn, C. Jillings, H.W. Lee, J.R. Leslie, H.B. Mak, A.B. MacDonald,W. McLatchie, B.A. Moffat, B.C. Robertson, T.J. Radcliffe, P. Skensved Queen's University Q.R. Ahmad, M.C. Browne, T.V. Bullard, T.H. Burritt, G.A. Cox, P.J. Doe,C.A. Duba, S.R. Elliott, J.V. Germani, A.A. Hamian, R. Hazama, K.M. Heeger, M. Howe, R. MeijerDrees, J.L. Orrell, R.G.H. Robertson,K.K. Schaffer, M.W.E. Smith, T.D. Steiger, J.F. Wilkerson University of Washington *Deceased P. Wittich
Accl. 10-2 - 101 Reactor 100-102 Atmos. 102-104 In matter: Solar 1010-1011 Supernova 1019-1020 Neutrino oscillations • Recall (vacuum, two family): Mixing angle L/E determines experimental sensitivity. Typical L/E (L:m, E: MeV) P. Wittich
Þ ne only n + Þ + + - CC d p p e e • Good measurement of ne energy spectrum • Weak directional sensitivity1-1/3cosq Þ n + Þ + + n NC Equal cross section for allntypes d p n x x • Measure total 8B n flux from the sun. Þ ES Allntypesbut enhanced sensitivity tone - - + Þ + ν e ν e x x • Low Statistics • Strong directional sensitivity SNO n reactions Significant with SuperK Smoking Gun, model independent P. Wittich
SNO Run Sequence Neutron Detection Method Capture on D Capture on Cl Capture on 3He Event-by-event separation of CC and NC events The Three Phases • Pure D2O • Good CC sensitivity • Added Salt in D2O • Enhanced NC sensitivity • Neutral Current Detectors • 3He proportional counters in the D2O completed*** 1 n d t g … e (Eg = 6.3 MeV) in progress 2 n35Cl 36Cl g … e (Eg = 8.6 MeV) future 3 n3He p t P. Wittich
NC Salt (BP98) Signals in SNO SNO MC assuming BP98 solar model (no oscillations) Counts in D2O/year/hit pmt Hit PMT’s (~Ee) P. Wittich
SNO: Handles ES SNO GOAL:CC/NC ratio is a direct signature for oscillations. ES: SK, SNO In addition: • Charged current energy response leads to good sensitivity to spectral distortions. • ES: ne washed out (SK) • CC: need lots of statistics (>>1year) • NC background to CC spectrum CC P. Wittich
Neutrino Candidate P. Wittich
SNO Results from Phase 1: Analysis outline • Calibration • Data reduction • Final Fit • Physics results: • CC flux (CC/ES ratio) • More soon: • Day/night, NC in D2O P. Wittich
ExtractingSignals in Phase 1 Three signals, three handles Energy Distribution Radial Distribution Solar Direction Distribution Extended maximum likelihood fits amplitudes P. Wittich
SNO measurements: • CC (8B) = 1.75 ± 0.07 ± 0.05 • (stat) (sys.) (theor) • ES (8B) = 2.39 ± 0.34 • (stat) (sys.) +0.12 - 0.11 +0.16 - 0.14 SNO result: CC flux (Units of 106/cm2/sec) NB: SNO CC flux < SNO ES flux (1.6 s). Also, SNO CC < SK ES (3.3 s) SNP: ne nm,t Ratio of FCC to BPB01 = 0.347± 0.029 P. Wittich
Implications: SNO Results To Active Neutrinos To Sterile Neutrinos sterile neutrino solutions strongly disfavored P. Wittich
LSND Dm2 ~ 1 eV2 Sterile? ( ) Neutrino oscillations: evidence roundup • Atmospheric • (SuperK) • Dm2 ~ 310-3 eV2 • sin22q ~ 1 • Oscillation to ns disfavored at 99%CL • Solar • (SuperK ES, SNO CC) • Dm2 ~ 10-4 - 10-12 eV2 • sin22q - LMA large • CCSNO/ESSK 3.3s. P. Wittich
Minos - sensitive to atmospheric KamLand - sensitive to solar LMA miniBoone - address LSND Further off… CP violation in MNS? Longer ways away… What about q13? What’s next for n’s Address extra-terrestrial evidence with terrestrial experiments…. • Solar neutrinos • SNO NC/CC in D2O, day/night • Borexino 7Be P. Wittich
Minos Sensitivity Study q23 (atmospheric nu’s) 10 kT-years exposure Null hypothesis (no osc.) P. Wittich NUMI public pages
Kamland Solar LMA in reach • Reactor with very long baseline • (Solar too…) From Kamland-US proposal. P. Wittich
MiniBooNE Sensitivity to LSND In two years, MiniBooNe can exclude the LSND region. Start taking data this year preliminary P. Wittich
Borexino public pages Borexino Measure 7Be solar nu’s Esp. sensitive to SMA Data taking 5/2002 P. Wittich
Muon systems CDF II Central calorimeter Solenoid Plug calorimeter Substantial upgrades from Run I detector, of relevance for B physics Time-of-Flight Drift chamber Silicon tracker P. Wittich
Oscillation in Quarks • CKM describes quark mixing • Also sensitive to ‘new physics’ What can you do at CDF (since we have B factories)? • Access to other modes, such as Bs • High sbbar(ppbar)~ 100 mb • This comes at considerable cost… • Disadvantages: • High backgrounds, coupled with low branching fractions, make interesting data hard to trigger on • Need an effective B trigger. • CDF eD2 low compared to B factories ( ~11% Run II estimate, rather than ~26% at BaBar) • Better particle ID CDF’s B program complementary P. Wittich
Dms: motivation By measuring Dms, we can get at Vtd: s s s s Information about one side of triangle. P. Wittich
How to measure Dms Oscillation probability: Determine the oscillation as a function of proper decay time: P. Wittich
How to measure Dms, cont’d • Find decay into favorite mode • Determine meson type at creation • Measure proper decay length • Count oscillated vs non-oscillated as f(t) Flavor tagging P. Wittich
Sensitivity • For CDF, D2 small (~5% Run I, ~11% Run II exp.) • Need large statistics (and/or good trigger) Effect: ND2N accurate estimate of decay length crucial fully reconstructed modes: sp negligible P. Wittich
Dms sensitivity: what matters? • For fast oscillations: • Proper time resolution • Dilution • Momentum resolution • Fully reconstructed modes Run I study for partially reconstructed mode: P. Wittich
In Run II, CDF triggers on displaced tracks in trigger: exploit long B lifetimes. Ideal for enriched hadronic B samples (cf Run I) CDF II: SVT trigger It works! P. Wittich
SVT, continued • Reconstructed with quantities available in the trigger • To do: • SVX coverage • L00 • SVT optimization P. Wittich
Determine the initial flavor of the B0s Flavor Tagging Opposite side tags • SLT: 1.7% • JetQ: 3.0% • OSK: 2.4% (RunII est) Run I Same side tags - TOF new to RunII P. Wittich
Tagging w/TOF: SSK • TOF: • 2s K/p separation for p < 1.6 GeV • With COT dE/dx, stat separation • K vs p? 1.0% 4.2% with TOF P. Wittich
Some numbers: estimated Bs yield • Br(B0s D+sp+)= 3 x 10-3 • Br(D+s fp+)x Br(fK+K-)=1.8% Therefore, the total usable Bf Bftot~5.4 x 10-6. s(B0s) ~ 20 mb eaBftots(B0s) ~ 5 pb-1. Assuming full coverage, perfect reco, …, 5 Bs decays to tape per pb-1 P. Wittich
Shutdown Delivered To tape Run II so far Oct Jul Jan • L ~ 1.0 x 1031 sec-1 at beginning of store. • FNAL BD: 50pb-1 delivered by Summer 2002 • CDF efficiency still needs work… • Not a lot of Bs to tape yet P. Wittich
Reach for Run II: 50 pb-1 and 2 fb-1 • For Run IIa (2 fb-1): • Expect ~ 10,000 Bs decays • For Summer 2002: 50 pb-1 • Expect ~250 Bs on tape Even this is a bit optimistic … Time well spent tuning detector and analysis… P. Wittich
Current Status: Getting ready • B lifetime study: precursor • Study of detector resolution (cf. Run I) P. Wittich
In Summary: MNS vs CKM Lots to do in both fields in the near future… P. Wittich
SNO calibrations • Electronics Calibration • q, t pedestals, discriminator walks & thresholds, TAC slopes • Optical Calibration • Pulsed laser ~2ns (337, 365, 386, 420, 500 and 620 nm) • Attenuation, Reflection, Scattering, PMT relative QE • Energy Calibration • 16N 6.13 MeV (also good for pointing) • p,T 19.8 MeV ’s (high E calibration point) • neutrons 6.25 MeV (NC response - bkgnd CC) • 8Li spectrum (CC also good for vertexing) • Low Energy Backgrounds • Encapsulated Th and U sources P. Wittich
Signal Distributions • Signal Distributions Radial Distribution Solar Direction Distribution P. Wittich
Signal Extraction • Systematic Uncertainties • Error Source • Energy scale • Energy resolution • Non-linearity • Vertex shift • Vertex resolution • Angular resolution • High Energy ’s • Low energy background • Instrumental background • Trigger efficiency • Live time • Cut acceptance • Earth orbit eccentricity • 17O, 18O • Experimental uncertainty • Cross-section • Solar Model CC error (%) -5.2, +6.1 ±0.5 ±0.5 ±3.1 ±0.7 ±0.5 -0.3, +0.0 0.0 -0.2, +0.0 0.0 ±0.1 -0.6, +0.7 ±0.2 0.0 -6.2, +7.0 3.0 -16, +20 • ES error (%) • -3.5, +5.4 • ±0.3 • ±0.4 • ±3.3 • ±0.4 • ±2.2 • -1.8, +0.0 • 0.0 • -0.5, +0.0 • 0.0 • ±0.1 • -0.6, +0.7 • ±0.2 • 0.0 • -5.7, +6.8 • 3.0 • -16, +20 From varying pdfs by MC vs. calibration differences P. Wittich
Current direct n mass limits What about other n physics? • Atmospheric n’s: mixing to active flavors established by SuperK at 10s. • LSND - sterile neutrinos suggested, disfavored by solar and atmospheric data - miniBoone • 0nbb - test for Majorana masses Recent controversial claims of evidence… P. Wittich
0nbb hep-ph/0201231 P. Wittich
Current limits in r-h plane Dms : limits only… Dmd: B0 osc eK from Kaons hep-ph/0201071 Vub, Vcb from other B decays Babar, Belle P. Wittich
Current limits on Dms LEPBOSC results from CKM workshop 2/2002 P. Wittich