340 likes | 464 Views
Description of Hadrons in the Tuebingen Chiral Quark Model Amand Faessler University of Tuebingen. Gutsche, Lyubovitskij, Yupeng Yan, Dong, Shen + PhD students: Kuckei, Chedket, Pumsa-ard, Kosongthonkee, Giacosa, Nicmorus. The Perturbative Chiral Quark Model. Quantum Chromodynamic (QCD) with:
E N D
Description of Hadrons in the Tuebingen Chiral Quark ModelAmand FaesslerUniversity of Tuebingen Gutsche, Lyubovitskij, Yupeng Yan, Dong, Shen+ PhD students: Kuckei, Chedket, Pumsa-ard, Kosongthonkee, Giacosa, Nicmorus
The Perturbative Chiral Quark Model Quantum Chromodynamic (QCD) with: (Approximate) Symmetries: • P, C, T (exact) • Global Gauge Invariance: (exact) for each flavorf
The Perturbative Chiral Quark Model Conservation of the No quarks of flavor f: • baryon number • electric charge • Third component of Isospin • Strangeness • Charme … (3) ApproximateFlavor Sym. all the same (4) ApproximateChiral Sym. u, d / SU(2) Isospin
The Perturbative Chiral Quark Model (Effective Lagrangian) Chiral Perturbation Theory (cPT): Gluons eliminated Quarks eliminated Perturbative Chiral Quark Model (PχQM) Gluons eliminated With Quarks
Chiral Invariant Lagrangian for the Quarks SU(2 or 3) Flavor
The Perturbative Chiral Quark Model (2) Non-Linear σ-Model: SU(2): invariant since: Invariant Lagrangian: with Scalar- and Vector-Potential.
The Perturbative Chiral Quark Model with: SU2: SU3:
The Perturbative Chiral Quark Model Seagull Term
The Perturbative Chiral Quark Model Current Algebra Relations Gell-Mann-Oaks-Renner relat.: Gell-Mann-Okubo relation: with:
The Perturbative Chiral Quark Model NUCLEON Wave Functions and Parameters: Quark Wave Function: Potential:
The Perturbative Chiral Quark Model The PION-NUCLEON Sigma Term: Gutsche, Lyubovitskij, Faessler; P. R. D63 (2001) 054026 PION-NUCLEON Scattering: time Weinberg-Tomozawa
The Perturbative Chiral Quark Model QCD: Proton
Pion-Nucleon Sigma Term in the PerturbativeChiral Quark Model
The Perturbative Chiral Quark Model Electromagnetic Properties of Baryons: + counter terms Tuebingen group: Phys. Rev. C68, 015205(2003); Phys. Rev. C69, 035207(2004) ….
Magnetic Moments and Electric and Magnetic Radii of Protons and Neutrons[in units of Nulear Magnetons and fm²]
Helicity Amplitudes for N – D Transition at the Photon Point Q² = 0
Strange Magnetic Moment and Electric and Magnetic Strange Mean Square Radii
Strangeness in the nucleonE. J. Beise et al. Prog. Part. Nucl. Phys. 54(2005)289 F. E. Maas et al. Phys. Rev. Lett. 94 (2005) 152001
Strangeness in the Nucleon E. J. Beise et al. Prog. Part. Nucl. Phys. 54(2005)289 § F. E. Maas et al. Phys. Rev. Lett. 94 (2005) 152001*
Compton Scatteringg + N -> g´+ N´and electricaand magneticbPolarizabilities of the Nucleon. Exp: Schumacher Prog. Part. Nucl. Phys. to be pub.55(2005)
Compton Scattering Diagrams for electric a and magnetic b Polarizabilities
Electric a and Magnetic b Polarizabilities of the Nucleon [10**(-4) fm^3]
The Perturbative Chiral Quark Model SUMMARY Theory of Strong Interaction: Effective Lagrangian with correct chiral Symmetry without Gluons with Quarks Perturbative Chiral Quark Model
The Perturbative Chiral Quark Model (Effective Lagrangian) Chiral Perturbation Theory: Gluons eliminated Quarks eliminated Perturbative Chiral Quark Model (PχQM) Gluons eliminated With Quarks
Chiral Invariant Lagrangian for the Quarks SU(2 or 3) Flavor
The Perturbative Chiral Quark Model (2) Non-Linear σ-Model: SU(2): invariant since: Invariant Lagrangian: withScalar- and Vector-Potential.
The Perturbative Chiral Quark Model Current Algebra With:
The Perturbative Chiral Quark Model Radii and Magnetic Moments of p,n Electric and Magneticp,nForm factors Strangeness in N π-Nucleon-σTerm Electric and Magnetic Polarizabilities of the Nucleon Two Parameters only: <r²>, g(A) The End