1 / 45

Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen

Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen. 1. Solution of the Solar Neutrino Problem by SNO. 2. Neutrino Masses and the Neutrinoless Double Beta Decay: Dirac versus Majorana Neutrinos 3. Neutrino Masses and Supersymmetry.

aelan
Download Presentation

Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Double Beta DecayandNeutrino MassesAmand FaesslerTuebingen 1. Solution of the Solar Neutrino Problem by SNO. 2. Neutrino Masses and the Neutrinoless Double Beta Decay: Dirac versus Majorana Neutrinos 3. Neutrino Masses and Supersymmetry Amand Faessler, Tuebingen

  2. (1) Solar Neutrino Problem Reaction Network: Oscillations: Fewer νeon Earth detected than produced in the Sun. Oscillations depend on: Amand Faessler, Tuebingen

  3. Sudburry Neutrino Observatory Creighton Mine Ontario / Canada (Zink Mine) Amand Faessler, Tuebingen

  4. THE SNO CHERENKOV DETECTOR WITH HEAVY WATER 9456 Photomultipliers Ø 20 cm 55 % of 4π Cherenkow radiation of e- Trigger ≥ 23 PMT Eν(Threshold) = 6.75 MeV Ø 17 m; view from below Amand Faessler, Tuebingen

  5. Cherenkov - Detectors: (ES) Elastic Neutrino Scattering: e- forward scattering S-KAMIOKANDE + SNO e- (fast) e- (fast) νx νe + W+ Z0 νe e- νx e- 6 : 1:1:1 Amand Faessler, Tuebingen

  6. Charged Current (CC): e- backward SNO P e- P W+ Deuteron (p + n) νe Amand Faessler, Tuebingen

  7. (NC) Neutral Current: n-capture in salt NaCl(n,γ) P n νx Z0 νx Deuteron SNO Amand Faessler, Tuebingen

  8. Assuming only Electron Neutrinos: (ES) 2.35*106 [Φ] (CC) 1.76*106 [Φ] (NC) 5.09*106 [Φ] Including Muon and Tauon ν: Amand Faessler, Tuebingen

  9. ν1, ν2, ν3 Mass States νe, νμ, ντ Flavor States Theta(1,2) = 32.6 degrees Solar + KamLand Theta(1,3) < 13 degrees Chooz Theta(2,3) = 45 degrees S-Kamiokande Amand Faessler, Tuebingen

  10. (Bild) Amand Faessler, Tuebingen

  11. (2) Neutrinoless Double Beta Decay The Double Beta Decay: 0+ 1+ 2- β- β- e- e- 0+ E>2me 0+ Amand Faessler, Tuebingen

  12. 2νββ-Decay (in SM allowed) Thesis Maria Goeppert-Mayer 1935 Goettingen P P n n Amand Faessler, Tuebingen

  13. Oνββ-Decay (forbidden) only forMajoranaNeutrinos ν = νc P P Left ν Phase Space 106x2νββ Left n n Amand Faessler, Tuebingen

  14. GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass: Amand Faessler, Tuebingen

  15. P P e- ν ν e- L/R l/r n n Amand Faessler, Tuebingen

  16. P P l/r ν light ν heavy N Neutrinos l/r n n Amand Faessler, Tuebingen

  17. Theoretical Description: Simkovic, Rodin, Haug, Kovalenko, Vergados, Kosmas, Schwieger, Raduta, Kaminski, Gutsche, Bilenky, Vogel et al. P k 0+ P e2 k e1 k ν Ek 1+ 2- n n Ei 0+ 0+ 0νββ Amand Faessler, Tuebingen

  18. Amand Faessler, Tuebingen

  19. Supersymmetry Bosons↔ Fermions ----------------------------------------------------------------------- Neutralinos P P e- e- Proton Proton u u u u d d Neutron Neutron n n Amand Faessler, Tuebingen

  20. Majorana; Amand Faessler, Tuebingen

  21. The best choice: Quasi-Particle- • Quasi-Boson-Approx.: • Particle Number non-conserv. (important near closed shells) • Unharmonicities • Proton-Neutron Pairing Pairing Amand Faessler, Tuebingen

  22. Amand Faessler, Tuebingen

  23. Only for Majorana νpossible. Amand Faessler, Tuebingen

  24. gPP fixed to 2νββ Each point: (3 basis sets) x (3 forces) = 9 values Amand Faessler, Tuebingen

  25. Amand Faessler, Tuebingen

  26. Amand Faessler, Tuebingen

  27. Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Massof planed Experimentsx from R-QRPA; m(n) = x/T(1/2) Amand Faessler, Tuebingen

  28. Neutrino-Masses for the Double 0νβ-Decay and Neutrino Oscillations Solar Neutrinos Atmospheric ν Reactor ν(Chooz; KamLand) with CP-Invariance: Amand Faessler, Tuebingen

  29. Solar Neutrinos (+KamLand): (KamLand) Atmospheric Neutrinos: (Super-Kamiok.) Amand Faessler, Tuebingen

  30. Reactor Neutrinos (Chooz): CP Amand Faessler, Tuebingen

  31. Bilenky, Faessler, Simkovic P. R. D 70(2004)33003 Amand Faessler, Tuebingen

  32. Normal: Inverted: Amand Faessler, Tuebingen

  33. (Bild) Amand Faessler, Tuebingen

  34. Amand Faessler, Tuebingen

  35. Amand Faessler, Tuebingen

  36. Summary:Neutrinos Oscillations, Neutrino Masses andthe Double beta Decay 1. Solution of the Solar Neutrino Problem by theSudburry-Neutrino-Observatory (SNO): Elastic Scattering (S-KAMIOKANDE): Heavy Water (SNO: Charged Currents): e- e- νx νc Z0 W+ νx e- νc e- νx e- n P P P W+ Z0 P P n n νc νx d d Amand Faessler, Tuebingen

  37. 2. Neutrinoless Double Beta Decay Dirac versus Majorana Neutrinos Grand Unified Theories (GUT‘s), R-Parity violating Supersymmetry → Majorana-Neutrinos = Antineutrinos Direct measurement in the Tritium Beta Decay in Mainz and Troisk P P u u u u P P d d u d u n n d n n Amand Faessler, Tuebingen

  38. 3. Neutrino Masses and Supersymmetry • R-Parity violating Supersymmetry mixes Neutrinos with Neutrinalinos (Photinos, Zinos, Higgsinos) and Tau-Susytau-Loops, Bottom-Susybottom-Loops → Majorana-Neutrinos (Faessler, Haug, Vergados: Phys. Rev. D ) • m(neutrino1) = ~0 – 0.02 [eV] • m(neutrino2) = 0.002 – 0.04 [eV] • m(neutrino3) = 0.03 – 1.03 [eV] • 0-Neutrino Double Beta decay <mββ> = 0.009 - 0.045 [eV] • ββExperiment: <mββ> < 0.47 [eV] • Klapdor et al.: <mββ> = 0.1 – 0.9 [eV] • Tritium (Otten, Weinheimer, Lobashow) <m> < 2.2 [eV] THE END Amand Faessler, Tuebingen

  39. ν-Mass-Matrix by Mixing with: Diagrams on the Tree level: Majorana Neutrinos: Amand Faessler, Tuebingen

  40. Loop Diagrams: Figure 0.1: quark-squark 1-loop contribution to mv X X Majorana Neutrino Amand Faessler, Tuebingen

  41. Figure 0.2: lepton-slepton 1-loop contribution to mv (7x7) Mass-Matrix: X Block Diagonalis. X Amand Faessler, Tuebingen

  42. 7 x 7 Neutrino-Massmatrix: Basis: Eliminate Neutralinos in 2. Order: separabel { Mass Eigenstate Vector in flavor space for 2 independent and possible Amand Faessler, Tuebingen

  43. Super-K: Amand Faessler, Tuebingen

  44. Horizontal U(1) Symmetry U(1) Field U(1) charge R-Parity breaking terms must be without U(1) charge change (U(1) charge conservat.) Symmetry Breaking: Amand Faessler, Tuebingen

  45. How to calculateλ‘i33 (andλi33)fromλ‘333? U(1)chargeconserved! 1,2,3 = families Amand Faessler, Tuebingen

More Related