450 likes | 605 Views
Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen. 1. Solution of the Solar Neutrino Problem by SNO. 2. Neutrino Masses and the Neutrinoless Double Beta Decay: Dirac versus Majorana Neutrinos 3. Neutrino Masses and Supersymmetry.
E N D
Double Beta DecayandNeutrino MassesAmand FaesslerTuebingen 1. Solution of the Solar Neutrino Problem by SNO. 2. Neutrino Masses and the Neutrinoless Double Beta Decay: Dirac versus Majorana Neutrinos 3. Neutrino Masses and Supersymmetry Amand Faessler, Tuebingen
(1) Solar Neutrino Problem Reaction Network: Oscillations: Fewer νeon Earth detected than produced in the Sun. Oscillations depend on: Amand Faessler, Tuebingen
Sudburry Neutrino Observatory Creighton Mine Ontario / Canada (Zink Mine) Amand Faessler, Tuebingen
THE SNO CHERENKOV DETECTOR WITH HEAVY WATER 9456 Photomultipliers Ø 20 cm 55 % of 4π Cherenkow radiation of e- Trigger ≥ 23 PMT Eν(Threshold) = 6.75 MeV Ø 17 m; view from below Amand Faessler, Tuebingen
Cherenkov - Detectors: (ES) Elastic Neutrino Scattering: e- forward scattering S-KAMIOKANDE + SNO e- (fast) e- (fast) νx νe + W+ Z0 νe e- νx e- 6 : 1:1:1 Amand Faessler, Tuebingen
Charged Current (CC): e- backward SNO P e- P W+ Deuteron (p + n) νe Amand Faessler, Tuebingen
(NC) Neutral Current: n-capture in salt NaCl(n,γ) P n νx Z0 νx Deuteron SNO Amand Faessler, Tuebingen
Assuming only Electron Neutrinos: (ES) 2.35*106 [Φ] (CC) 1.76*106 [Φ] (NC) 5.09*106 [Φ] Including Muon and Tauon ν: Amand Faessler, Tuebingen
ν1, ν2, ν3 Mass States νe, νμ, ντ Flavor States Theta(1,2) = 32.6 degrees Solar + KamLand Theta(1,3) < 13 degrees Chooz Theta(2,3) = 45 degrees S-Kamiokande Amand Faessler, Tuebingen
(Bild) Amand Faessler, Tuebingen
(2) Neutrinoless Double Beta Decay The Double Beta Decay: 0+ 1+ 2- β- β- e- e- 0+ E>2me 0+ Amand Faessler, Tuebingen
2νββ-Decay (in SM allowed) Thesis Maria Goeppert-Mayer 1935 Goettingen P P n n Amand Faessler, Tuebingen
Oνββ-Decay (forbidden) only forMajoranaNeutrinos ν = νc P P Left ν Phase Space 106x2νββ Left n n Amand Faessler, Tuebingen
GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass: Amand Faessler, Tuebingen
P P e- ν ν e- L/R l/r n n Amand Faessler, Tuebingen
P P l/r ν light ν heavy N Neutrinos l/r n n Amand Faessler, Tuebingen
Theoretical Description: Simkovic, Rodin, Haug, Kovalenko, Vergados, Kosmas, Schwieger, Raduta, Kaminski, Gutsche, Bilenky, Vogel et al. P k 0+ P e2 k e1 k ν Ek 1+ 2- n n Ei 0+ 0+ 0νββ Amand Faessler, Tuebingen
Supersymmetry Bosons↔ Fermions ----------------------------------------------------------------------- Neutralinos P P e- e- Proton Proton u u u u d d Neutron Neutron n n Amand Faessler, Tuebingen
Majorana; Amand Faessler, Tuebingen
The best choice: Quasi-Particle- • Quasi-Boson-Approx.: • Particle Number non-conserv. (important near closed shells) • Unharmonicities • Proton-Neutron Pairing Pairing Amand Faessler, Tuebingen
Only for Majorana νpossible. Amand Faessler, Tuebingen
gPP fixed to 2νββ Each point: (3 basis sets) x (3 forces) = 9 values Amand Faessler, Tuebingen
Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Massof planed Experimentsx from R-QRPA; m(n) = x/T(1/2) Amand Faessler, Tuebingen
Neutrino-Masses for the Double 0νβ-Decay and Neutrino Oscillations Solar Neutrinos Atmospheric ν Reactor ν(Chooz; KamLand) with CP-Invariance: Amand Faessler, Tuebingen
Solar Neutrinos (+KamLand): (KamLand) Atmospheric Neutrinos: (Super-Kamiok.) Amand Faessler, Tuebingen
Reactor Neutrinos (Chooz): CP Amand Faessler, Tuebingen
Bilenky, Faessler, Simkovic P. R. D 70(2004)33003 Amand Faessler, Tuebingen
Normal: Inverted: Amand Faessler, Tuebingen
(Bild) Amand Faessler, Tuebingen
Summary:Neutrinos Oscillations, Neutrino Masses andthe Double beta Decay 1. Solution of the Solar Neutrino Problem by theSudburry-Neutrino-Observatory (SNO): Elastic Scattering (S-KAMIOKANDE): Heavy Water (SNO: Charged Currents): e- e- νx νc Z0 W+ νx e- νc e- νx e- n P P P W+ Z0 P P n n νc νx d d Amand Faessler, Tuebingen
2. Neutrinoless Double Beta Decay Dirac versus Majorana Neutrinos Grand Unified Theories (GUT‘s), R-Parity violating Supersymmetry → Majorana-Neutrinos = Antineutrinos Direct measurement in the Tritium Beta Decay in Mainz and Troisk P P u u u u P P d d u d u n n d n n Amand Faessler, Tuebingen
3. Neutrino Masses and Supersymmetry • R-Parity violating Supersymmetry mixes Neutrinos with Neutrinalinos (Photinos, Zinos, Higgsinos) and Tau-Susytau-Loops, Bottom-Susybottom-Loops → Majorana-Neutrinos (Faessler, Haug, Vergados: Phys. Rev. D ) • m(neutrino1) = ~0 – 0.02 [eV] • m(neutrino2) = 0.002 – 0.04 [eV] • m(neutrino3) = 0.03 – 1.03 [eV] • 0-Neutrino Double Beta decay <mββ> = 0.009 - 0.045 [eV] • ββExperiment: <mββ> < 0.47 [eV] • Klapdor et al.: <mββ> = 0.1 – 0.9 [eV] • Tritium (Otten, Weinheimer, Lobashow) <m> < 2.2 [eV] THE END Amand Faessler, Tuebingen
ν-Mass-Matrix by Mixing with: Diagrams on the Tree level: Majorana Neutrinos: Amand Faessler, Tuebingen
Loop Diagrams: Figure 0.1: quark-squark 1-loop contribution to mv X X Majorana Neutrino Amand Faessler, Tuebingen
Figure 0.2: lepton-slepton 1-loop contribution to mv (7x7) Mass-Matrix: X Block Diagonalis. X Amand Faessler, Tuebingen
7 x 7 Neutrino-Massmatrix: Basis: Eliminate Neutralinos in 2. Order: separabel { Mass Eigenstate Vector in flavor space for 2 independent and possible Amand Faessler, Tuebingen
Super-K: Amand Faessler, Tuebingen
Horizontal U(1) Symmetry U(1) Field U(1) charge R-Parity breaking terms must be without U(1) charge change (U(1) charge conservat.) Symmetry Breaking: Amand Faessler, Tuebingen
How to calculateλ‘i33 (andλi33)fromλ‘333? U(1)chargeconserved! 1,2,3 = families Amand Faessler, Tuebingen