1 / 33

Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen

Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen. Neutrino Masses and the Neutrinoless Double Beta Decay: Dirac versus Majorana Neutrinos Accuracy of the Nuclear Matrix Elements. Neutrinoless Double Beta Decay. The Double Beta Decay:. 0 +.

errol
Download Presentation

Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Double Beta DecayandNeutrino MassesAmand FaesslerTuebingen Neutrino Masses and the Neutrinoless Double Beta Decay: Dirac versus Majorana Neutrinos Accuracy of the Nuclear Matrix Elements Amand Faessler, Tuebingen

  2. Neutrinoless Double Beta Decay The Double Beta Decay: 0+ 1+ 2- β- β- e- e- 0+ E>2me 0+ Amand Faessler, Tuebingen

  3. 2νββ-Decay (in SM allowed) Thesis Maria Goeppert-Mayer 1935 Goettingen P P n n Amand Faessler, Tuebingen

  4. Oνββ-Decay (forbidden) only forMajoranaNeutrinos ν = νc P P Left ν Phase Space 106x2νββ Left n n Amand Faessler, Tuebingen

  5. GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass: Amand Faessler, Tuebingen

  6. P P e- ν ν e- L/R l/r n n Amand Faessler, Tuebingen

  7. P P l/r ν light ν heavy N Neutrinos l/r n n Amand Faessler, Tuebingen

  8. Supersymmetry Bosons↔ Fermions ----------------------------------------------------------------------- Neutralinos P P e- e- Proton Proton u u u u d d Neutron Neutron n n Amand Faessler, Tuebingen

  9. Theoretical Description: Simkovic, Rodin, Haug, Kovalenko, Vergados, Kosmas, Schwieger, Raduta, Kaminski, Gutsche, Bilenky, Vogel et al. P k 0+ P e2 k e1 k ν Ek 1+ 2- n n Ei 0+ 0+ 0νββ Amand Faessler, Tuebingen

  10. Amand Faessler, Tuebingen

  11. The best choice: Quasi-Particle- • Quasi-Boson-Approx.: • Particle Number non-conserv. (important near closed shells) • Unharmonicities • Proton-Neutron Pairing Pairing Amand Faessler, Tuebingen

  12. Amand Faessler, Tuebingen

  13. Only for Majorana νpossible. Amand Faessler, Tuebingen

  14. gPP fixed to 2νββ; M(0nbb) [MeV**(-1)] Each point: (3 basis sets) x (3 forces) = 9 values Amand Faessler, Tuebingen

  15. Amand Faessler, Tuebingen

  16. Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Massof planed Experiments Amand Faessler, Tuebingen

  17. Neutrino-Masses from the 0νbband Neutrino Oscillations Solar Neutrinos (CL, Ga, Kamiokande, SNO) Atmospheric ν(Super-Kamiokande) Reactor ν(Chooz; KamLand) with CP-Invariance: Amand Faessler, Tuebingen

  18. Solar Neutrinos (+KamLand): (KamLand) Atmospheric Neutrinos: (Super-Kamiok.) Amand Faessler, Tuebingen

  19. Reactor Neutrinos (Chooz): CP Amand Faessler, Tuebingen

  20. ν1, ν2, ν3 Mass States νe, νμ, ντ Flavor States Theta(1,2) = 32.6 degrees Solar + KamLand Theta(1,3) < 13 degrees Chooz Theta(2,3) = 45 degrees S-Kamiokande Amand Faessler, Tuebingen

  21. Bilenky, Faessler, Simkovic P. R. D 70(2004)33003 Amand Faessler, Tuebingen

  22. (Bild) Amand Faessler, Tuebingen

  23. Summary:Accuracy of Neutrino Masses from 0nbb • Fit the g(pp) by 2nbb in front of the proton-neutron Gamow-Teller NN matrixelement include exp. Error of 2nbb. • Calculate with these g(pp) for three different forces (Bonn, Nijmegen, Argonne) and three different basis sets the 0nbb. • Use QRPA and R-QRPA (Pauli principle) • Use: g(A) = 1.25 and 1.00 • Error of matrixelement 20 to 50 % (large errors from experim value of T(1/2, 2nbb)). Amand Faessler, Tuebingen

  24. Summary:Results from 0nbb • <m(n)>(0nbb Ge76, Exp. Klapdor) < 0.47 [eV] • <M(heavy n)> > 1.2 [GeV] • <M(heavy Vector B)> > 5600 [GeV] • SUSY+R-Parity: l‘(1,1,1) < 1.1*10**(-4) • Mainz-Troisk: m(n) < 2.2 [eV] • Astro Physics (SDSS): Sum{ m(n) } < 1 to 2 [eV] • Klapdor et al. from 0nbb Ge76 with R-QRPA (no error of theory included): 0.15 to 0.72 [eV], if confirmed. THE END Amand Faessler, Tuebingen

  25. Summary:Accuracy of Neutrino Masses by the Double Beta Decay Dirac versus Majorana Neutrinos Grand Unified Theories (GUT‘s), R-Parity violatingSupersymmetry →Majorana-Neutrino = Antineutrinos <m(n)> < 0.47 eV; l‘ < 1.1*10**(-4) Direct measurement in the Tritium Beta Decay in Mainz and Troisk Klapdor et al.: <mββ> = 0.1 – 0.9 [eV] ; R-QRPA: 0.15 – 0.72 [eV] P P u u u u P P d d d d u u n n n n THE END

  26. 3. Neutrino Masses and Supersymmetry • R-Parity violating Supersymmetry mixes Neutrinos with Neutrinalinos (Photinos, Zinos, Higgsinos) and Tau-Susytau-Loops, Bottom-Susybottom-Loops → Majorana-Neutrinos (Faessler, Haug, Vergados: Phys. Rev. D ) • m(neutrino1) = ~0 – 0.02 [eV] • m(neutrino2) = 0.002 – 0.04 [eV] • m(neutrino3) = 0.03 – 1.03 [eV] • 0-Neutrino Double Beta decay <mββ> = 0.009 - 0.045 [eV] • ββExperiment: <mββ> < 0.47 [eV] • Klapdor et al.: <mββ> = 0.1 – 0.9 [eV] • Tritium (Otten, Weinheimer, Lobashow) <m> < 2.2 [eV] THE END Amand Faessler, Tuebingen

  27. ν-Mass-Matrix by Mixing with: Diagrams on the Tree level: Majorana Neutrinos: Amand Faessler, Tuebingen

  28. Loop Diagrams: Figure 0.1: quark-squark 1-loop contribution to mv X X Majorana Neutrino Amand Faessler, Tuebingen

  29. Figure 0.2: lepton-slepton 1-loop contribution to mv (7x7) Mass-Matrix: X Block Diagonalis. X Amand Faessler, Tuebingen

  30. 7 x 7 Neutrino-Massmatrix: Basis: Eliminate Neutralinos in 2. Order: separabel { Mass Eigenstate Vector in flavor space for 2 independent and possible Amand Faessler, Tuebingen

  31. Super-K: Amand Faessler, Tuebingen

  32. Horizontal U(1) Symmetry U(1) Field U(1) charge R-Parity breaking terms must be without U(1) charge change (U(1) charge conservat.) Symmetry Breaking: Amand Faessler, Tuebingen

  33. How to calculateλ‘i33 (andλi33)fromλ‘333? U(1)chargeconserved! 1,2,3 = families Amand Faessler, Tuebingen

More Related