330 likes | 573 Views
Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen. Neutrino Masses and the Neutrinoless Double Beta Decay: Dirac versus Majorana Neutrinos Accuracy of the Nuclear Matrix Elements. Neutrinoless Double Beta Decay. The Double Beta Decay:. 0 +.
E N D
Double Beta DecayandNeutrino MassesAmand FaesslerTuebingen Neutrino Masses and the Neutrinoless Double Beta Decay: Dirac versus Majorana Neutrinos Accuracy of the Nuclear Matrix Elements Amand Faessler, Tuebingen
Neutrinoless Double Beta Decay The Double Beta Decay: 0+ 1+ 2- β- β- e- e- 0+ E>2me 0+ Amand Faessler, Tuebingen
2νββ-Decay (in SM allowed) Thesis Maria Goeppert-Mayer 1935 Goettingen P P n n Amand Faessler, Tuebingen
Oνββ-Decay (forbidden) only forMajoranaNeutrinos ν = νc P P Left ν Phase Space 106x2νββ Left n n Amand Faessler, Tuebingen
GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass: Amand Faessler, Tuebingen
P P e- ν ν e- L/R l/r n n Amand Faessler, Tuebingen
P P l/r ν light ν heavy N Neutrinos l/r n n Amand Faessler, Tuebingen
Supersymmetry Bosons↔ Fermions ----------------------------------------------------------------------- Neutralinos P P e- e- Proton Proton u u u u d d Neutron Neutron n n Amand Faessler, Tuebingen
Theoretical Description: Simkovic, Rodin, Haug, Kovalenko, Vergados, Kosmas, Schwieger, Raduta, Kaminski, Gutsche, Bilenky, Vogel et al. P k 0+ P e2 k e1 k ν Ek 1+ 2- n n Ei 0+ 0+ 0νββ Amand Faessler, Tuebingen
The best choice: Quasi-Particle- • Quasi-Boson-Approx.: • Particle Number non-conserv. (important near closed shells) • Unharmonicities • Proton-Neutron Pairing Pairing Amand Faessler, Tuebingen
Only for Majorana νpossible. Amand Faessler, Tuebingen
gPP fixed to 2νββ; M(0nbb) [MeV**(-1)] Each point: (3 basis sets) x (3 forces) = 9 values Amand Faessler, Tuebingen
Neutrinoless Double Beta Decay and the Sensitivity to the Neutrino Massof planed Experiments Amand Faessler, Tuebingen
Neutrino-Masses from the 0νbband Neutrino Oscillations Solar Neutrinos (CL, Ga, Kamiokande, SNO) Atmospheric ν(Super-Kamiokande) Reactor ν(Chooz; KamLand) with CP-Invariance: Amand Faessler, Tuebingen
Solar Neutrinos (+KamLand): (KamLand) Atmospheric Neutrinos: (Super-Kamiok.) Amand Faessler, Tuebingen
Reactor Neutrinos (Chooz): CP Amand Faessler, Tuebingen
ν1, ν2, ν3 Mass States νe, νμ, ντ Flavor States Theta(1,2) = 32.6 degrees Solar + KamLand Theta(1,3) < 13 degrees Chooz Theta(2,3) = 45 degrees S-Kamiokande Amand Faessler, Tuebingen
Bilenky, Faessler, Simkovic P. R. D 70(2004)33003 Amand Faessler, Tuebingen
(Bild) Amand Faessler, Tuebingen
Summary:Accuracy of Neutrino Masses from 0nbb • Fit the g(pp) by 2nbb in front of the proton-neutron Gamow-Teller NN matrixelement include exp. Error of 2nbb. • Calculate with these g(pp) for three different forces (Bonn, Nijmegen, Argonne) and three different basis sets the 0nbb. • Use QRPA and R-QRPA (Pauli principle) • Use: g(A) = 1.25 and 1.00 • Error of matrixelement 20 to 50 % (large errors from experim value of T(1/2, 2nbb)). Amand Faessler, Tuebingen
Summary:Results from 0nbb • <m(n)>(0nbb Ge76, Exp. Klapdor) < 0.47 [eV] • <M(heavy n)> > 1.2 [GeV] • <M(heavy Vector B)> > 5600 [GeV] • SUSY+R-Parity: l‘(1,1,1) < 1.1*10**(-4) • Mainz-Troisk: m(n) < 2.2 [eV] • Astro Physics (SDSS): Sum{ m(n) } < 1 to 2 [eV] • Klapdor et al. from 0nbb Ge76 with R-QRPA (no error of theory included): 0.15 to 0.72 [eV], if confirmed. THE END Amand Faessler, Tuebingen
Summary:Accuracy of Neutrino Masses by the Double Beta Decay Dirac versus Majorana Neutrinos Grand Unified Theories (GUT‘s), R-Parity violatingSupersymmetry →Majorana-Neutrino = Antineutrinos <m(n)> < 0.47 eV; l‘ < 1.1*10**(-4) Direct measurement in the Tritium Beta Decay in Mainz and Troisk Klapdor et al.: <mββ> = 0.1 – 0.9 [eV] ; R-QRPA: 0.15 – 0.72 [eV] P P u u u u P P d d d d u u n n n n THE END
3. Neutrino Masses and Supersymmetry • R-Parity violating Supersymmetry mixes Neutrinos with Neutrinalinos (Photinos, Zinos, Higgsinos) and Tau-Susytau-Loops, Bottom-Susybottom-Loops → Majorana-Neutrinos (Faessler, Haug, Vergados: Phys. Rev. D ) • m(neutrino1) = ~0 – 0.02 [eV] • m(neutrino2) = 0.002 – 0.04 [eV] • m(neutrino3) = 0.03 – 1.03 [eV] • 0-Neutrino Double Beta decay <mββ> = 0.009 - 0.045 [eV] • ββExperiment: <mββ> < 0.47 [eV] • Klapdor et al.: <mββ> = 0.1 – 0.9 [eV] • Tritium (Otten, Weinheimer, Lobashow) <m> < 2.2 [eV] THE END Amand Faessler, Tuebingen
ν-Mass-Matrix by Mixing with: Diagrams on the Tree level: Majorana Neutrinos: Amand Faessler, Tuebingen
Loop Diagrams: Figure 0.1: quark-squark 1-loop contribution to mv X X Majorana Neutrino Amand Faessler, Tuebingen
Figure 0.2: lepton-slepton 1-loop contribution to mv (7x7) Mass-Matrix: X Block Diagonalis. X Amand Faessler, Tuebingen
7 x 7 Neutrino-Massmatrix: Basis: Eliminate Neutralinos in 2. Order: separabel { Mass Eigenstate Vector in flavor space for 2 independent and possible Amand Faessler, Tuebingen
Super-K: Amand Faessler, Tuebingen
Horizontal U(1) Symmetry U(1) Field U(1) charge R-Parity breaking terms must be without U(1) charge change (U(1) charge conservat.) Symmetry Breaking: Amand Faessler, Tuebingen
How to calculateλ‘i33 (andλi33)fromλ‘333? U(1)chargeconserved! 1,2,3 = families Amand Faessler, Tuebingen