1 / 15

Discrete-Time Transfer Functions

Chapter 5. Discrete-Time Process Models. Discrete-Time Transfer Functions. Now let us calculate the transient response of a combined discrete-time and continuous-time system, as shown below. The input to the continuous-time system G ( s ) is the signal:.

Download Presentation

Discrete-Time Transfer Functions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 5 Discrete-Time Process Models Discrete-Time Transfer Functions • Now let us calculate the transient response of a combined discrete-time and continuous-time system, as shown below. • The input to the continuous-time system G(s) is the signal: • The system response is given by the convolution integral:

  2. Chapter 5 Discrete-Time Process Models Discrete-Time Transfer Functions • With • For 0 ≤ τ ≤ t, • We assume that the output sampler is ideally synchronized with the input sampler. • The output sampler gives the signal y*(t) whose values are the same as y(t) in every sampling instant t = jTs. • Applying the Z-transform yields:

  3. Chapter 5 Discrete-Time Process Models Discrete-Time Transfer Functions • Taking i = j – k, then: • For zero initial conditions, g(iTs) = 0, i < 0, thus: where • Discrete-time Transfer Function • The Z-transform of Continuous-time Transfer Function G(s) • The Z-transform of Input Signal u(t)

  4. Chapter 5 Discrete-Time Process Models Discrete-Time Transfer Functions • When the sample-and-hold device is assumed to be a zero-order hold, then the relation between G(s) and G(z) is

  5. Chapter 5 Discrete-Time Process Models Example Find the discrete-time transfer function of a continuous system given by: where

  6. Chapter 5 Discrete-Time Process Models Approximation of Z-Transform • Previous example shows how the Z-transform of a function written in s-Domain can be so complicated and tedious. • Now, several methods that can be used to approximate the Z-transform will be presented. • Consider the integrator block as shown below: • The integration result for one sampling period of Ts is:

  7. Chapter 5 Discrete-Time Process Models Approximation of Z-Transform • Forward Difference Approximation (Euler Approximation) The exact integration operation presented before will now be approximated using Forward Difference Approximation. • This method follows the equation given as: • Taking the Z-transform of the above equation: while • Thus, the Forward Difference Approximation is done by taking or

  8. Chapter 5 Discrete-Time Process Models Approximation of Z-Transform • Backward Difference Approximation The exact integration operation will now be approximated using Backward Difference Approximation. • This method follows the equation given as: • Taking the Z-transform of the above equation: while • Thus, the Forward Difference Approximation is done by taking or

  9. Chapter 5 Discrete-Time Process Models Approximation of Z-Transform • Trapezoidal Approximation(Tustin Approximation, Bilinear Approximation) The exact integration operation will now be approximated using Backward Difference Approximation. • This method follows the equation given as: • Taking the Z-transform, while • Thus, the Forward Difference Approximation is done by taking or

  10. Chapter 5 Discrete-Time Process Models Example Find the discrete-time transfer function of for the sampling time of Ts = 0.5 s, by using (a) ZOH, (b) FDA, (c) BDA, (d) TA. (a) ZOH (b) FDA

  11. Chapter 5 Discrete-Time Process Models Example (c) BDA (d) TA

  12. Chapter 5 Discrete-Time Process Models Input-Output Discrete-Time Models • A general discrete-time linear model can be written in time domain as: where m and n are the order of numerator and denominator, k denotes the time instant, and d is the time delay. • Defining a shift operator q–1, where: • Then, the first equation can be rewritten as: or or

  13. Chapter 5 Discrete-Time Process Models Input-Output Discrete-Time Models • The polynomials A(q–1) and B(q–1) are in descending order q–1, completely written as follows:

  14. Chapter 5 Discrete-Time Process Models Homework 6 (a) Find the discrete-time transfer functions of the following continuous-time transfer function, for Ts = 0.25 s and Ts = 1 s. Use the Forward Difference Approximation (b) Calculate the step response of both transfer functions for 0 ≤ t ≤ 5 s. (c) Compare the step response of both transfer functions with the step response of the continuous-time transfer function G(s) in one plot.

More Related