1 / 14

Rozklad mnohočlenů na součin - vytýkání

Rozklad mnohočlenů na součin - vytýkání. Uprav na součin:. 3abm – 6amn = 36s 4 t 2 – 48s 3 t 3 = ab 2 – ab = 3x 2 y – 9xy 2 = x 3 y 2 + 8x 3 y 3 = 105r 3 + 65r 5 = 18ab 2 + 21a 2 b 2 = 75 – 45c 3 =. Uprav na součin:. 3abm – 6amn = 3am (b – 2n)

sylvia
Download Presentation

Rozklad mnohočlenů na součin - vytýkání

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Rozklad mnohočlenů na součin - vytýkání

  2. Uprav na součin: • 3abm – 6amn = • 36s4t2 – 48s3t3 = • ab2 – ab = • 3x2y – 9xy2 = • x3y2 + 8x3y3 = • 105r3 + 65r5 = • 18ab2 + 21a2 b2 = • 75 – 45c3 =

  3. Uprav na součin: • 3abm – 6amn = 3am (b – 2n) • 36s4t2 – 48s3t3 = 12s3t2 (s – t) • ab2 – ab = ab(b – 1) • 3x2y – 9xy2 = 3xy(x – y) • x3y2 + 8x3y3 = x3y2(1 + 8y) • 105r3 + 65r5 = 5r3 (21 + 13r2 ) • 18ab2 + 21a2 b2 = 3ab(6b + 7a) • 75 – 45c3 = 15 ( 5 – 3c3)

  4. Rozlož na součin dvou činitelů: • a(x + y) + b(x + y) = • p(r + 2r) – q(r + 2r) = • x(m – n) + 5(m – n) = • 5(k – l) + (k – l) = • 2(u – 1) + v(u – 1) = • x(3z +1) + y(3z + 1) + 2z(3z + 1) = • a(u – 2) – 6b(u – 2) + (u – 2) = • 7(a2 + b) + x(a2 + b) – y(b + a2) = • 2z(x +y2 )+ (x + y2 ) – 7z(x + y2) =

  5. Rozlož na součin činitelů: • a(x + y) + b(x + y) = (x + y) (a + b) • p(r + 2r) – q(r + 2r) = (r + 2r)(p – q) • x(m – n) + 5(m – n) = (m – n) (x + 5) • 5(k – l) + (k – l) = 6 (k – l) • 2(u – 1) + v(u – 1) = (u – 1)(2 + v) • x(3z +1) + y(3z + 1) + 2z(3z + 1) = (3z + 1)(x + y+2z) • a(u – 2) – 6b(u – 2) + (u – 2) = (u – 2)(a + 6b + 1) • 7(a2 + b) + x(a2 + b) – y(b + a2) = (a2 + b)(7 + x – y) • 2z(x +y2 )+ (x + y2 ) – 7z(x + y2) = (x + y2)(1 – 5z)

  6. Z jednoho dvojčlenu vytkni -1, potom rozlož na součin dvou činitelů: • x(a – 1) + 2(1 – a) = • 4(x – y) + 7z(y – x) = • 3s(5 – r) + t(r – 5) = • a2(2a – 3) + (3 – 2a) = • q(p – 4) – r(4 – p) = • a(c – d) – b(d – c) = • a(x + y) + (– x – y) = • r2(2a – 5b) – 3s(5b – 2a)= • 3(h2 + 2q) – 4k(– h2– 2g) =

  7. Z jednoho dvojčlenu vytkni -1, potom rozlož na součin dvou činitelů: • x(a – 1) + 2(1 – a) = (a – 1) (x – 2) • 4(x – y) + 7z(y – x) = (x – y) (4 – 7z) • 3s(5 – r) + t(r – 5) = (5 – r)(3s – t) • a2(2a – 3) + (3 – 2a) = (2a – 3)(a2 - 1) • q(p – 4) – r(4 – p) = (p – 4)(q + r) • a(c – d) – b(d – c) = (c – d)(a + b) • a(x + y) + (– x – y) = (x + y)(a – 1) • r2(2a – 5b) – 3s(5b – 2a)= (2a – 5b)(r2+ 3s) • 3(h2 + 2q) – 4k(– h2– 2g) = (h2 + 2q)(3+ 4k)

  8. Doplň vhodně závorky a rozlož na součin: • y(3 + z) + 3 + z = • u(2 – v) – 2 + v = • ab(2c + d) + 2c + d = • 5x(a – 7) – a + 7 = • m2(p – 1) + p – 1 = • 3x(4 + y) – 4 – y = • rs3(t – 12) + t – 12 = • 2a2(m + n2) – m – n2 = • 8m + 3n – 2(3n + 8m) = • – y + 9z – 3x(9z – y) =

  9. Doplň vhodně závorky a rozlož na součin: • y(3 + z) + 3 + z = (3 + z)(y + 1) • u(2 – v) – 2 + v = (2 – v)(u – 1) • ab(2c + d) + 2c + d = (2c + d)(ab + 1) • 5x(a – 7) – a + 7 = (a – 7)(5x – 1) • m2(p – 1) + p – 1 = (p – 1)(m2 + 1) • 3x(4 + y) – 4 – y = (4 + y)(3x – 1) • rs3(t – 12) + t – 12 = (t – 12)(rs3 + 1) • 2a2(m + n2) – m – n2 = (m + n2)(2a2 – 1) • 8m + 3n – 2(3n + 8m) = – (3n + 8m) • – y + 9z – 3x(9z – y) = (9z – y)(1 – 3x)

  10. Rozlož na součin (postupné vytýkání): • ax + bx + cx + dx = • 5u + 5 + uv + v = • am + an + bm + bn = • 10ax + 2ay + 15bx + 3by = • pm – pq + 7m – 7q = • qr + r + q + 1 = • 2ay – 8az + 3xy – 12xz = • 5ab – 5ac + 4bc – 4c2 = • a3 - a2 + a – 1 = • y4 + y3 – y – 1 =

  11. Rozlož na součin (postupné vytýkání): • ax + bx + cx + dx = • 5u + 5 + uv + v = • am + an + bm + bn = • 10ax + 2ay + 15bx + 3by = • pm – pq + 7m – 7q = • qr + r + q + 1 = • 2ay – 8az + 3xy – 12xz = • 5ab – 5ac + 4bc – 4c2 = • a3 - a2 + a – 1 = • y4 + y3 – y – 1 =

  12. Rozlož na součin (postupné vytýkání): • ax + bx + cx + dx= 2x (a + b) • 5u + 5 + uv + v = (u + 1)(5 + v) • am + an + bm + bn= (m + n)(a + b) • 10ax + 2ay + 15bx + 3by = (5x + y)(2a + 3b) • pm – pq + 7m – 7q = (m – q)(p – 7) • qr + r + q + 1 = (q + 1)(r + 1) • 2ay – 8az + 3xy – 12xz = (y – 4z)(2a + 3x) • 5ab – 5ac + 4bc – 4c2 = (b – c)(5a + 4c) • a3 - a2 + a – 1 = (a – 1)(a2 + 1) • y4 + y3 – y – 1 = (y – 1)(y3 – 1)

  13. Zdroje: • Karel Kindl – Sbírka úloh z algebry pro základní devítileté školy, SPN, Praha v roce 1979 • RNDr. Ivan Bušek, PhDr.Vlastimil Macháček, Bohumil Kotlík, Milena Tichá – Sbírka úloh z matematiky pro 8.ročník základní školy, SPN 1992, ISBN 80-04-26090-X

More Related