1 / 23

Conditioning with Copulas

Conditioning with Copulas. Let C 1 (u,v) denote the first partial derivative of C(u,v). F(x,y) = C(F X (x),F Y (y)), distribution of Y|X=x is given by: F Y|X (y) = C 1 (F X (x),F Y (y)) C(u,v) = uv, the conditional distribution of V given that U=u is C 1 (u,v) = v = Pr(V<v|U=u).

tait
Download Presentation

Conditioning with Copulas

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Conditioningwith Copulas • Let C1(u,v) denote the first partial derivative of C(u,v). F(x,y) = C(FX(x),FY(y)), distribution of Y|X=x is given by: • FY|X(y) = C1(FX(x),FY(y)) • C(u,v) = uv, the conditional distribution of V given that U=u is C1(u,v) = v = Pr(V<v|U=u). • If C1 is simple enough to invert algebraically, then the simulation of joint probabilities can be done using the derived conditional distribution. That is, first simulate a value of U, then simulate a value of V from C1.

  2. Tails of Copulas ASTIN 2001

  3. Kendall correlation • t is a constant of the copula • t = 4E[C(u,v)] – 1 • t = 2dE[C(u1, . . .,ud)] – 1 2d – 1 – 1

  4. Frank’s Copula • Define gz = e-az – 1 • Frank’s copula with parameter a  0 can be expressed as: • C(u,v) = -a-1ln[1 + gugv/g1] • C1(u,v) = [gugv+gv]/[gugv+g1] • c(u,v) = -ag1(1+gu+v)/(gugv+g1)2 • t(a) = 1 – 4/a + 4/a20a t/(et-1) dt • For a<0 this will give negative values of t. • v = C1-1(p|u) = -a-1ln{1+pg1/[1+gu(1–p)]}

  5. Gumbel Copula • C(u,v) = exp{- [(- ln u)a + (- ln v)a]1/a}, a  1. • C1(u,v) = C(u,v)[(- ln u)a + (- ln v)a]-1+1/a(-ln u)a-1/u • c(u,v) = C(u,v)u-1v-1[(-ln u)a +(-ln v)a]-2+2/a[(ln u)(ln v)]a-1 {1+(a-1)[(-ln u)a +(-ln v)a]-1/a} • t(a) = 1 – 1/a • Simulate two independent uniform deviates u and v • Solve numerically for s>0 with ues = 1 + as • The pair [exp(-sva), exp(-s(1-v)a)] will have the Gumbel copula distribution

  6. Heavy Right Tail Copula • C(u,v) = u + v – 1 + [(1 – u)-1/a + (1 – v)-1/a – 1]-a a>0 • C1(u,v) = 1 – [(1 – u)-1/a + (1 – v)-1/a – 1] -a-1(1 – u)-1-1/a • c(u,v) = (1+1/a)[(1–u)-1/a +(1– v)-1/a –1] -a-2[(1–u)(1–v)]-1-1/a • t(a) = 1/(2a + 1) • Can solve conditional distribution for v

  7. Joint Burr • F(x) = 1 – (1 + (x/b)p)-a and G(y) = 1 – (1 + (y/d)q)-a • F(x,y) = 1 – (1 + (x/b)p)-a – (1 + (y/d)q)-a + [1 + (x/b)p + (y/d)q]-a • The conditional distribution of y|X=x is also Burr: • FY|X(y|x) = 1 – [1 + (y/dx)q]-(a+1), where dx =d[1 + (x/b)p/q]

  8. Partial Perfect Correlation Copula Generator • Assume logical values 0 and 1 are arithmetic also • h : unit square  unit interval • H(x) = 0xh(t)dt • C(u,v) = uv – H(u)H(v) + H(1)H(min(u,v)) • C1(u,v) = v – h(u)H(v) + H(1)h(u)(v>u) • c(u,v) = 1 – h(u)h(v) + H(1)h(u)(u=v)

  9. h(u) = (u>a) • H(u) = (u – a)(u>a) • t(a) = (1 – a)4

  10. h(u) = ua • H(u) = ua+1/(a+1) • t(a) = 1/[3(a+1)4] + 8/[(a+1)(a+2)2(a+3)]

  11. The Normal Copula • N(x) = N(x;0,1) • B(x,y;a) = bivariate normal distribution function,  = a • Let p(u) be the percentile function for the standard normal: • N(p(u)) = u, dN(p(u))/du = N’(p(u))p’(u) = 1 • C(u,v) = B(p(u),p(v);a) • C1(u,v) = N(p(v);ap(u),1-a2) • c(u,v) = 1/{(1-a2)0.5exp([a2p(u)2-2ap(u)p(v)+a2p(v)2]/[2(1-a2)])} • t(a) = 2arcsin(a)/p • a: 0.15643 0.38268 0.70711 0.92388 0.98769 • t: 0.10000 0.25000 0.50000 0.75000 0.90000

  12. Tail Concentration Functions • L(z) = Pr(U<z,V<z)/z2 • R(z) = Pr(U>z,V>z)/(1 – z)2 • L(z) = C(z,z)/z2 • 1 - Pr(U>z,V>z) = Pr(U<z) + Pr(V<z) - Pr(U<z,V<z) • = z + z – C(z,z). • Then R(z) = [1 – 2z +C(z,z)]/(1 – z)2 • Generalizes to multi-variate case

  13. Cumulative Tau • t = –1+40101 C(u,v)c(u,v)dvdu • J(z) = –1+40z0z C(u,v)c(u,v)dvdu/C(z,z)2 • Generalizes to multi-variate case

  14. Cumulative Conditional Mean • M(z) = E(V|U<z) = z-10z01 vc(u,v)dvdu • M(1) = ½ • A pairwise concept Copula Distribution Function • K(z) = Pr(C(u,v)<z) • Generalizes to multi-variate case

  15. HRT Gumbel Frank Normal Parameter 0.968 1.67 4.92 0.624 Ln Likelihood 124 157 183 176 Tau 0.34 0.40 0.45 0.43

More Related