E N D
Lecture 17Hydrogenic atom (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and made available online by work supported jointly by University of Illinois, the National Science Foundation under Grant CHE-1118616 (CAREER), and the Camille & Henry Dreyfus Foundation, Inc. through the Camille Dreyfus Teacher-Scholar program. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the sponsoring agencies.
Hydrogenic atom • We study the Schrödinger equation of the hydrogenic atom, of which exact, analytical solution exists. • We add to our repertories another special function – associated Laguerre polynomials – solutions of the radial part of the hydrogenic atom’s Schrödinger equation.
Coulomb potential • The potential energy between a nucleus withatomic number Z and an electron is Proportional to nuclear charge Attractive Inversely proportional to distance
Hamiltonian of hydrogenic atom • The Classical total energy in Cartesian coordinates is Center of mass motion Relative motion
The Schrödinger equation Center of mass motion Relative motion 6-dimensional equation!
Separation of variables Separable into 3 + 3 dimensions Center of mass motion Relative motion
The Schrödinger equation • Two Schrödinger equations Hydrogen’s gas-phase dynamics (3D particle in a box) Hydrogen’s atomic structure In spherical coordinates centered at the nucleus
Further separation of variables • The Schrödinger eq. for atomic structure: • Can we further separate variables? YES Still 3 dimensional!
Further separation of variables Function of just r Function of just φand θ
Particle on a sphere redux • We have already encountered the angular part – this is the particle on a sphere
Radial and angular components • For the radial degree of freedom, we have a new equation. This is kinetic energy in the radial motion Original Coulomb potential + a new one
Centrifugal force • This new term partly canceling the attractive Coulomb potential can be viewed as the repulsive potentialdue to the centrifugal force. The higher the angular momentum, the greater the force in the positive r direction
The radial part • Simplify the equation by scaling the variables
The radial solutions • We need a new set of orthogonal polynomials: • The solution of this is Slater-type orbital Associated Laguerre polynomials Normalization
Verification • Let us verify that the (n = 1, l = 0) and (n = 2, l = 1) radial solutions indeed satisfy the radial equation
Summary • The 3-dimensional Schrödinger equation for the hydrogenic atomic structures can be solved analytically after separation of variables. • The wave function is a product of the radial part involving associated Laguerre polynomials and the angular part that is the spherical harmonics. • There are 3 quantum numbers n, l, and m. • The discrete energy eigenvalues are negative and inversely proportional to n2.