270 likes | 451 Views
Advanced D3D10 Rendering. Emil Persson May 24, 2007. Overview. Introduction to D3D10 Rendering techniques in D3D10 Optimizations. Introduction. Best D3D revision yet! Clean and powerful API Lots of new features SM 4.0 New geometry shader Stream Out Texture arrays
E N D
Advanced D3D10 Rendering Emil Persson May 24, 2007
Overview • Introduction to D3D10 • Rendering techniques in D3D10 • Optimizations Advanced D3D10 Rendering
Introduction • Best D3D revision yet! • Clean and powerful API • Lots of new features • SM 4.0 • New geometry shader • Stream Out • Texture arrays • Render to volume texture • MSAA individual sample access • Constant buffers • Sampler state decoupled from texture unit • Dual-source blending • Etc… Advanced D3D10 Rendering
Clean API • Vista only • Everything is mandatory (almost) • No legacy hardware support • Clean starting point for future evolution of the API • Limited market short-term • Some old features deprecated • Fixed function • Assembly shaders • Alpha test • Triangle fans • Point sprites • Clip planes Advanced D3D10 Rendering
Dealing with deprecated features • Fixed function • Write a few über-shaders • Assembly shaders • Convert to HLSL • Alpha test • Use discard or clip() in pixel shader • Use alpha-to-coverage • Triangle fans • Seldom used anyway, usually just for a quad • Convert to triangle list or strip • Point sprites • Expand point to 2 triangles in GS • Clip planes • Use clip distance and/or cull distance Advanced D3D10 Rendering
SM 4.0 • Geometry shader • Processes a full primitive (point, line, triangle) • Has access to adjacency information (optional) • Useful for silhouette detection, shadow volume extrusion etc. • May output multiple primitives • Output limitation is 1024 floats • May output nothing (to kill primitive) Advanced D3D10 Rendering
SM 4.0 • Infinite instruction count • Very long shaders may have lower throughput though • Integer and bitwise instruction • Indexable temporaries • Allows for local arrays • May be used to emulate a stack • Useful system generated values • SV_VertexID • SV_PrimitiveID • SV_InstanceID • SV_Position (Like VPOS, but now .zw are defined too) • SV_IsFrontFace (Like VFACE) • SV_RenderTargetArrayIndex • SV_ViewportArrayIndex • SV_ClipDistance • SV_CullDistance Advanced D3D10 Rendering
SM 4.0 • Integer & bitwise instructions • Signed and unsigned • No idiv though, just udiv • Same registers as floats • Can alias without conversion with asint(), asuint(), asfloat() etc. • Integer texture sample values • Syntax: Texture2D <uint4> myTex; • Access to individual samples in MSAA surface • Allows for custom AA resolve • Syntax: Texture2DMS <float4, 4> myTex; Advanced D3D10 Rendering
Pixel center • Half pixel offset is gone! • Affects SV_Position as well • Now matches OpenGL • DX10 DX9 Advanced D3D10 Rendering
Pixel center • Pixels and texels align • TexCoord = SV_Position.xy / float2(width, height) Texel center Screenspace Advanced D3D10 Rendering
The small batch problem • D3D10 designed to minimize batch overhead • Pulls work from draw time to creation time • Validation • Shader input/output configuration • Immutable State Objects • Input layout • Rasterizer state • Sampler state • Depth stencil state • Blend state Advanced D3D10 Rendering
The small batch problem • D3D10 also provides tools to reduce draw calls • Improved instancing interface • Geometry shader • More shader resources • Constant indexing in PS • Render target arrays • Texture arrays Advanced D3D10 Rendering
Rendering techniques in D3D10 Advanced D3D10 Rendering
Global Illumination Advanced D3D10 Rendering
Global Illumination • Probes on a volume grid across the scene • Each probe captures light environment into a tiny “cubemap” • Probes are converted to Spherical Harmonics coefficients • Indirect lighting is computed using interpolated SH coefficients • Do the same in probe passes to get multiple light bounces Advanced D3D10 Rendering
Global Illumination • Awful lot of work • Each probe is 6 slices. We need loads of probes. • Sample scene has over 300 probes • Solution • Use geometry shader to reduce work • Distribute work across multiple frames • Sample updates 40 cubes per frame • Scatter updates to hide artifacts • Skip over “empty” space probes Advanced D3D10 Rendering
Global Illumination • The Geometry Shader advantage • 40 cubes x 6 faces x n draw calls = Pain • DX9 style unrealistic even for simple scenes • Update multiple slices per pass with GS • GS output limit is 1024 floats • Keep number of interpolators down to maximize primitive count • Managed to update 5 probes (30 slices) per pass • 8 passes is more manageable than 240 ... Advanced D3D10 Rendering
Post tone-mapping resolve • D3D10 allows for custom AA resolves • Can drastically improve HDR AA quality • Standard resolve occurs before tone-mapping • Ideally resolve should be done after tone-mapping • Standard resolve Custom resolve Advanced D3D10 Rendering
Post-tonemapping resolve • Texture2DMS<float4, SAMPLES> tHDR; • float4 main(float4 pos: SV_Position) : SV_Target • { • int3 coord; • coord.xy = (int2) pos.xy; • coord.z = 0; • // Tone-map individual samples and sum it up • float4 sum = 0; • [unroll] • for (int i = 0; i < SAMPLES; i++) • { • float4 c = tHDR.Load(coord, i); • sum.rgb += 1.0 – exp2(-exposure * c.rgb); • } • // Average • sum *= (1.0 / SAMPLES); • // sRGB • sum.rgb = pow(sum.rgb, 1.0 / 2.2); • return sum; • } Advanced D3D10 Rendering
Optimizations Advanced D3D10 Rendering
Geometry shader • GS optimizations • Input/output usually the bottleneck • Reduce outputs with frustum and/or backface culling • Keep input small by packing data • TexCoord could be 2x16 bits in an uint • Or use for instance asuint(normal.w) • Merge to full float4 vectors • Don’t do 2x float2 • Keep output small • Could be faster to trade for some work in PS • Pass just position, don’t interpolate both lightVec and viewVec • Or even back-project SV_Position.xyz to world space in PS • Small output means more work fits within 1024 floats limit Advanced D3D10 Rendering
GS frustum and backface culling • // Transform to clip space • float4 pos[3]; • pos[0] = mul(mvp, In[0].pos); • pos[1] = mul(mvp, In[1].pos); • pos[2] = mul(mvp, In[2].pos); • // Use frustum culling to improve performance • float4 t0 = saturate(pos[0].xyxy * float4(-1, -1, 1, 1) - pos[0].w); • float4 t1 = saturate(pos[1].xyxy * float4(-1, -1, 1, 1) - pos[1].w); • float4 t2 = saturate(pos[2].xyxy * float4(-1, -1, 1, 1) - pos[2].w); • float4 t = t0 * t1 * t2; • [branch] • if (!any(t)) • { • // Use backface culling to improve performance • float2 d0 = pos[1].xy * pos[0].w - pos[0].xy * pos[1].w; • float2 d1 = pos[2].xy * pos[0].w - pos[0].xy * pos[2].w; • [branch] • if (d1.x * d0.y > d0.x * d1.y || min(min(pos[0].w, pos[1].w), pos[2].w) < 0.0) • { • // Output primitive here ... • } • } Advanced D3D10 Rendering
Miscellaneous optimizations • Pre-baked constant buffers • Don’t update per-material constants in DX9 style • PS don’t need to return float4 anymore • Use float3 if you only care about RGB • May reduce instruction count • Use GS to reduce draw calls • Single pass render-to-cubemap • Update multiple render targets per pass Advanced D3D10 Rendering
The new shader compiler • SM4 shader compiler preserves semantics better • This means more responsibility for you guys • Be careful about your assumptions • Periodically check the resulting assembly • D3D10DisassembleShader() • Use GPUShaderAnalyzer for performance critical shaders Advanced D3D10 Rendering
The new shader compiler HLSL code: float4 main(float4 t: TEXCOORD0) : SV_Target { if (t.x > t.y) return t.xyzw; else return t.wzyx; } • Example: DX9 assembly: add r0.x, -v0.x, v0.y cmp oC0, r0.x, v0.wzyx, v0 DX10 assembly: lt r0.x, v0.y, v0.x if_nz r0.x // <--- Did you really want a branch here? mov o0.xyzw, v0.xyzw ret else mov o0.xyzw, v0.wzyx ret endif Advanced D3D10 Rendering
The new shader compiler • Use [branch], [flatten], [unroll] & [loop] to control output code • This is not for everyone • Poor use could reduce performance • Make sure you know what you’re doing • Only use if you’re familiar with assembly code • Verify that you get the code you expect • Always benchmark both options New DX10 assembly (using [flatten]): lt r0.x, v0.y, v0.x movc o0.xyzw, r0.xxxx, v0.xyzw, v0.wzyx ret Advanced D3D10 Rendering
Questions? emil.persson@amd.com Advanced D3D10 Rendering