1 / 11

PARÁMETROS ESTADÍSTICOS

PARÁMETROS ESTADÍSTICOS. Medidas de centralización:. Moda: Mediana: Cálculo de la mediana en el caso discreto : ·si N es par: ·si N es impar: Cálculo de la mediana en el caso continuo:. Medias:

tamira
Download Presentation

PARÁMETROS ESTADÍSTICOS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PARÁMETROS ESTADÍSTICOS

  2. Medidas de centralización: • Moda: • Mediana: Cálculo de la mediana en el caso discreto: ·si N es par: ·si N es impar: Cálculo de la mediana en el caso continuo:

  3. Medias: • Media aritmética:Se divide la suma de los datos por el número total de ellos o si los datos vienen en una tabla con sus frecuencias absolutas fi (tantos con este valor, otros tantos con otro valor...), se multiplica cada dato xi por su frecuencia fi . • Media Ponderada:resultado de multiplicar cada uno de los números por un valor particular para cada uno de ellos. EJEMPLO: Datos X= 10, 7, 6’4 Peso W= 5; 3; 2 MP: ((10·5) + (7·3)+ (6’4·2))/10= 8,38 • Media geométrica: • Media armónica:

  4. Medidas de Posición: • Cuartiles: • Deciles: • Centiles o percentiles:

  5. Medidas de dispersión: • Rango: Es la diferencia entre el valor máximo y el valor mínimo. • -RANGO INTERCUARTILICO. la diferencia entre el tercer y el primer cuartil. • Desviación media: • Varianza: Para datos agrupados

  6. La desviación típica: • Para datos agrupados:

  7. Medidas de forma: • Coeficiente de apuntamiento coeficiente de asimetría: • http://www.monografias.com/trabajos87/medidas-forma-asimetria-curtosis/medidas-forma-asimetria-curtosis.shtml

  8. 2. Interpretación de la media y desviación típica • Desigualdad de Tchebycheff: • Transformaciones (suma y producto) en un conjunto de datos estadísticos: • La suma de las desviaciones con respecto a la media aritmética es cero (0).Si a todos los valores de la variable se le suma una misma cantidad, la media aritmética queda aumentada en dicha cantidad.

  9. Coeficiente de variación: • El coeficiente de variación es típicamente menor que uno u ocho. Sin embargo, en ciertas distribuciones de probabilidad puede ser 1 o mayor que 1. • Para su mejor interpretación se expresa como porcentaje. • Depende de la desviación típica o también llamada "desviación estándar" y en mayor medida de la media aritmética, dado que cuando ésta es 0 o muy próxima a este valor pierde significado, ya que puede dar valores muy grandes, que no necesariamente implican dispersión de datos. • El coeficiente de variación es común en varios campos de la probabilidad aplicada, como teoría de renovación y teoría de colas

  10. FIN

More Related