1 / 34

Model Theory

Max Euwe. Model Theory. Jouko Väänänen. Signature. A signature is a set L of predicate symbols P,Q,R,... function symbols f,g,h,... constant symbols c,d,e,. Arity function:. Structure.

tan
Download Presentation

Model Theory

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Max Euwe Model Theory Jouko Väänänen Jouko Väänänen: Model theory

  2. Signature • A signature is a set L of • predicate symbols P,Q,R,... • function symbols f,g,h,... • constant symbols c,d,e,... Arity function: Jouko Väänänen: Model theory

  3. Structure • A structure (or model), for a signature L is a non-empty set M, called the domain or universe of M, and: • A subset PM of Mn for every predicate symbol P in L of arity n • A function fM of Mn into M for every function symbol f in L of arity n • An element cM of M for every constant symbol c in L. Jouko Väänänen: Model theory

  4. Unary structure M Vocabulary consists of one unary predicate symbol P0. Examples of structures P0 Jouko Väänänen: Model theory

  5. Unary structure with three predicates divides the domain into up to 8 parts. M P0 P1 P2 Jouko Väänänen: Model theory

  6. Graphs • A graph consists of vertices and edges between the vertices as in: • In this picture vertices are blue, edges are red. • Vertices connected by an edge are neighbors. Jouko Väänänen: Model theory

  7. More graphs Jouko Väänänen: Model theory

  8. A binary relation on a set M is any subsety R of the Cartesian product MxM. If (a,b) is in R, we write aRb, for simplicity Relational structure (M,R) MxM R b (a,b) a Jouko Väänänen: Model theory

  9. A binary relation is Symmetric if aRb implies bRa Reflexive if always aRa Transitive if aRb and bRc imply aRc Antisymmetric if aRb implies not bRa Antrireflexive if never aRa R R Properties of relational structures Jouko Väänänen: Model theory

  10. Equivalence relation Jouko Väänänen: Model theory

  11. Homomorphism Jouko Väänänen: Model theory

  12. Homomorphism defined Jouko Väänänen: Model theory

  13. Natural numbers with the successor function 0 1 2 … 0 1 Jouko Väänänen: Model theory

  14. Composition of homomorphisms Jouko Väänänen: Model theory

  15. Embedding h Jouko Väänänen: Model theory

  16. Isomorphism Jouko Väänänen: Model theory

  17. Automorphism Jouko Väänänen: Model theory

  18. Isomorphism defined Jouko Väänänen: Model theory

  19. Properties • Composition of isomorphisms is an isomorphism • Inverse of an isomorphism is an isomorphism • Identity is an automorphism • Automorphisms form a group Jouko Väänänen: Model theory

  20. Monadic (unary) structure  P0 P0  Jouko Väänänen: Model theory

  21. Equivalence relation Isomorphism Jouko Väänänen: Model theory

  22. Equivalence relation Automorphism Jouko Väänänen: Model theory

  23. Total (linear)order is isomorphic to ((0,1),<) ((0,1),<) 0 Jouko Väänänen: Model theory

  24. Well-order … … … The isomorphism is unique! Jouko Väänänen: Model theory

  25. Dense total order Jouko Väänänen: Model theory

  26. Substructure Jouko Väänänen: Model theory

  27. Equivalent • M is a substructure of M’ • Inclusion idM:MM’ is an embedding Jouko Väänänen: Model theory

  28. Natural numbers with the successor function 0 1 2 … 0 1 2 1 2 … 0 2 … Jouko Väänänen: Model theory

  29. Integers with the successor function -2 -1 0 1 2 … … 0 1 2 -2 0 1 -2 -4 0 2 4 Jouko Väänänen: Model theory

  30. Generated substructure <X>M M Subset Generated substructure Jouko Väänänen: Model theory

  31. Generated substructure The idea of the proof Jouko Väänänen: Model theory

  32. The successor function again 0 1 2 … 0 1 2 What do these generate? What do these generate? What do these generate? 1 2 … 0 2 … Jouko Väänänen: Model theory

  33. Preliminary observation • Equivalent: • X = dom(A) for some substructure A of B • X contains cB for all cL and is closed under fB for each f  L • There is at most such A. • Proof: (a)(b): Follows from the definition of substructure. • (b)(a): Define A in the obvious way. The domain of A is X. cA=cB, fA=fB|Xn, RA=RB|Xn Jouko Väänänen: Model theory

  34. Proof of the Lemma • There is a unique smallest substructure A of B, such that Ydom(A). • It is denoted <Y>B • |<Y>B||Y|+|L| • <Y>B is countable, if Y and L are • Proof: Let Y0=Y{cB : cL}, Yn+1=Yn {fB(a) : fL, a1,…,anYn}, and Y*= nYn. By the previous lemma, Y* is the domain of a substructure A of B. By construction it is the smallest such. Jouko Väänänen: Model theory

More Related