1 / 32

Towards a superstatistical SU2 Yang-Mills eos

Towards a superstatistical SU2 Yang-Mills eos. Superstatistics: Euler-Gamma T Monte Carlo with random spacing Ideal gas limit, effective action First numerical results towards SU2 eos. Tamás S. Bíró (KFKI RMKI Budapest / BME) and Zsolt Schram (DTP University of Debrecen).

tan
Download Presentation

Towards a superstatistical SU2 Yang-Mills eos

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Towards a superstatistical SU2 Yang-Mills eos • Superstatistics: Euler-Gamma T • Monte Carlo with random spacing • Ideal gas limit, effective action • First numerical results towards SU2 eos Tamás S. Bíró (KFKI RMKI Budapest / BME) and Zsolt Schram (DTP University of Debrecen) Dense Matter 2010, 5-10. 04. 2010, Stellenbosch, South-Africa

  2. Entropy formulas, distributions

  3. Laws of thermodynamics • 0. Equilibrium  temperature ; entanglement • T dY(S) = dX(E) + p dU(V) - µ dZ(N) • dS ≥ 0 • S = 0 at T = 0 • thermodynamical limit: • associative composition rule

  4. Example: Gibbs-Boltzmann

  5. Example: Tsallis

  6. Compisition in small steps: asymptotic rule

  7. 3. Possible causes for non-additivity • Long range interaction  energy not add. • Long range correlation  entropy not add. • Example: kinetic energy composition rule for massless partons with E - dependent interaction Our view to the forest is blocked by single trees

  8. Superstatistics

  9. Superstatistics • Kinetic simulation (NEBE) • Monte Carlo simulation • Superstatistics: effective partition function

  10. q = 1 + 1 / c POWER _LAW TAILED canonical distribution This equals to Euler-Gamma distributed Gibbs factors: Interpretations: fluctuating temperature, (Wilk-Wlodarczyk) energy imbalance, (Rafelski) multiplicative + additive noise, (Tsallis, Biró-Jakovác) finite step CLT (Beck – Cohen)

  11. Gamma distribution max: 1 – 1/c, mean: 1, spread: 1 / √ c

  12. Gamma deviate random spacing asymmetry Expectation values of observables: -S(t,U) DU dt w (t) e t A(U) ∫ ∫ v c A = -S(t,U) DU dt w (t) e ∫ ∫ c Action: S(t,U) = a(U) t + b(U) / t t= a / a = T / T asymmetry parameter av t s

  13. 1. Effective action method Effective action calculation: -S (U,v) DU e A(U) ∫ eff A = -S (U,0) ∫ DU e eff v=0: Polyakov line, v=1: ss Plaquettes, v=-1: ts Plaquettes

  14. Lattice theory: effective action ∞ c c+v-1 -(a+c)t - b/t c ∫ S = dt t e - ln G(c) eff 0 Plaquette sums: space-space: a = ∑ (1 – Re tr P ss) space-time: b = ∑ (1 – Re tr P ts) Evaluation methods: • exact analytical • saddle point • numerical (Gauss-Laguerre)

  15. Lattice theory: effective action (c+v)/2 c c b ( ( ) ) S = 2K (2  b(a+c) ) - ln a+c c+v eff G(c) Asymptotics: • large a,b finite c: 2  ab • large a,b,c and a-b<< (a+b): a + b

  16. 2. Numerical approach Euler Gamma distribution Near to standard: c = 1024.0 Smaller values of c (13.5, 5.5) Asymmetry parameter in MC Action difference and sum -> eos Other quantities

  17. Lattice spacing asymmetry

  18. Asymmetry parameter for c = 5.5

  19. Euler-Gamma random deviates statistics

  20. Equipartition of action

  21. Compare action equipartition

  22. Electric / Magnetic ratio

  23. Random deviate spacing per link update

  24. Action difference at c = 1024

  25. Action difference at several c

  26. Ideal Tsallis-Bose gas For c = 5.5 we have 1 / a = 4.5 and e ≈ 4 e_0

  27. Action sum at c = 1024

  28. Action sum at several c-s

  29. Summary Composition rule  entropy formula Power-law (not exponential) Superstatistics (Euler-Gamma) Tsallis-Bose id.gas eos (SB const.) Towards SU2 YM Monte Carlo eos: RND asymmetry equipartition interaction measure

  30. hcbm.kfki.hu Aug. 15-20. 2010 Hot and Cold Baryonic Matter

More Related