220 likes | 360 Views
Digital Video Solutions to Midterm Exam 2009 Edited by Shih-Ming Huang Confirmed by Prof. Jar-Ferr Yang LAB: 92923 R, TEL: ext. 621 E-mail: smhuang@video5.ee.ncku.edu.tw Page of MPL: http://mediawww.ee.ncku.edu.tw. 2.1.
E N D
Digital Video Solutions to Midterm Exam 2009 Edited by Shih-Ming Huang Confirmed by Prof. Jar-Ferr Yang LAB: 92923 R, TEL: ext. 621 E-mail: smhuang@video5.ee.ncku.edu.tw Page of MPL: http://mediawww.ee.ncku.edu.tw
2.1 (a) (b) Bitstream: 100100 0101 1111001101 1111001100 1010
2.2 p(A0) = 0.05 ,p(A1) = 0.05, p(A2) = 0.75, p(A3) = 0.15. (a) (b) (c) (d) A2 0.75 Huffman code: A0 111 or 000 A1 110 or 001 A2 0 or 1 A3 10 or 01 0 0 A3 0.15 can be exchanged 0 A1 0.05 1 1 A0 0.05 1 0.0 0.05 0.1 0.85 1.0 A0 A2 A1 A3 0.1 0.175 0.7375 0.85 A0 A2 A1 A3 0.175 0.2312 0.6531 0.7375 A0 A2 A1 A3 0.2312 0.6531 A1 A0 A2 A3 0.2523 0.2734 0.2523<W<0.2734, .010001 (17/64) (6-bit)
2.3. -2 -1 0 1 2
2.4 (a) (b) approximated to scale X by a constant!!! (c) Not identity matrix!!! :scaling :scaling and exchange column or row The main difference between X and X’ is due to the scaling factor!!!
2.5 p(A) = 0.7, p(B) = 0.2, p(C) = 0.05, p(D)=p(E) =0.02, p(F) =0.01 0 A 0.7 Huffman code: A 0 (1) B 10 (01) C 110 (001) D 1111 (0000) E 11100 (00011) F 11101 (00010) 0 B0.2 0 C0.05 1 1 D0.02 1 0 E0.02 1 0 F0.01 1 (a) RVLC code : A 0 B 101 C 11011 D 1111111 E 111000111 F 111010111
(b) Original Huffman code: 0, 10, 110, 1111, 11100, 11101 optimal symmetrical RVLC : 從後面長 0 1 1 0 10 11 100 101 1000 1001 10000 10001 100000 100001 Optimal symmetrical RVLC A 0 B 11 C 101 D 1001 E 10001 F 100001
(c) Original Huffman code: 0, 10, 110, 1111, 11100, 11101 optimal asymmetrical RVLC : 從前面長 000001 100001 10001 00001 1001 0001 101 11 001 Prefix conflict 01 0 1 0 1 Optimal asymmetrical RVLC A 0 B 11 C 101 D 1001 E 10001 F 100001
SPIHT 44 18 4 5 -22 15 6 -5 8 -7 3 -4 7 8 0 0 2.6 (a) (b) Initialization: LIP: { (0,0)44, (0,1)18, (1,0)-22, (1,1)15 } LIS: { D(0,1), D(1,0), D(1,1)} LSP: {} Significant Pass: 10 000 000 Refinement Pass: LIP: { (0,1)18, (1,0)-22, (1,1)15} LIS: {D(0,1), D(1,0), D(1,1)} LSP: { (0,0)44 } 48
44 18 4 5 -22 15 6 -5 8 -7 3 -4 7 8 0 0 Significant Pass: 10 11 0 000 Refinement Pass: 0 LIP: { (1,1)15} LIS: {D(0,1), D(1,0), D(1,1)} LSP: { (0,0)44, (0,1)18, (1,0)-22} 40 up to 25 bits Significant Pass: 10 0 1 10 0 0 Generated bitstream: 10 000 000 10 11 0 000 0 10 0 1 10 00
(c) (1) Bitstream: 10 000 000 10 11 0 000 0 10 0 1 10 00 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (2) Bitstream: 10 000 000 10 11 0 000 0 10 0 1 10 00 40 24 0 0 -24 0 0 0 0 0 0 0 0 0 0 0 (3) Bitstream: 10 000 000 10 11 0 000 0 10 0 1 10 00 40 24 0 0 -24 12 0 0 12 0 0 0 0 0 0 0
(a) 2.7 JPEG-LS Block Diagram
(b) 2.7 Fixed Predictor
0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (a) 2.8 Significance Propagation Pass (Pass 1) ZC: Zero Coding SC: Sign Coding zc zc sc zc zc zc sc zc zc zc zc zc zc zc zc zc zc zc sc zc zc zc sc zc zc : Coefficient which is already significant : Significance Propagation Pass (Pass 1)
0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (a) 2.8 Magnitude Refinement Pass (Pass 2) zc zc sc zc zc zc sc zc zc zc zc zc zc zc zc zc zc zc sc zc zc zc sc zc zc : Magnitude Refinement Pass (Pass 2) : Significance Propagation Pass (Pass 1)
0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (a) 2.8 Clean-up Pass (Pass 3) zc zc sc zc zc zc zc sc zc zc zc zc zc zc zc zc zc sc zc zc zc zc zc zc zc zc sc zc sc zc zc zc zc sc zc zc zc zc zc zc zc : Pass 1 : Pass 3 (ZC & SC) : Pass 2 : Pass 3(RLC)
0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.8 zc zc sc zc zc (b) zc (a) zc (b) sc zc (c) zc zc zc zc zc zc zc zc sc zc zc zc zc zc zc zc zc sc zc sc (d) zc zc zc zc sc zc zc zc zc zc zc zc a: ZC, LL band kh[j] = 1, kv[j] = 0, kd[j] = 1, ksig[j]=6 b: SC h[j] = 0, v[j] = 0, ksign[j] =9 c: ZC, LL band kh[j] = 0, kv[j] = 0, kd[j] = 0, ksig[j]=0 d: MR kh[j] = 1, kv[j] = 0, kd[j] = 1, ksig[j]=6 kmag[j] = 15 or 16
2.8 (b) Assignment of context labels for significant coding “x” means “don’t care.”
2.8 (b) Assignment of context labels and flipping factor for sign coding Current sample ch[j] , cv[j]: neighborhood sign status -1: one or both negative. 0: both insignificant or both significant but opposite sign. 1: one or both positive.
2.8 (b) Assignment of context labels and flipping factor for magnitude refinement coding s [j]: remains zero until after the first magnitude refinement bit has been coded. For subsequent refinement bits, s [j] = 1. ksig[j]: context label for significant coding of sample j
The entropy coder uses 19 different contexts which maybe summarized as follows: Contexts 0 through 8 of the ZC primitive, Contexts 9 through 13 of the SC primitive, Contexts 14 through 16 of the MR primitive, Contexts 17 of the RLC primitive, Contexts 18 for the UNIFORM primitive. 2.8 (b)
3.1. 3.2. 3.3. 3.4. 3.5. F,… an intraframe coding method … T, F, RLC is a data compression technique F, The arrangement is a lossless compression method F,…, it obtains less compression. or …, it cannot achieve more efficient compression