1 / 30

PI Dimitri J. Mavriplis University of Wyoming Co-PI Luigi Martinelli Princeton University

High-Order Spatial and Temporal Methods for Simulation and Sensitivity Analysis of High-Speed Flows. PI Dimitri J. Mavriplis University of Wyoming Co-PI Luigi Martinelli Princeton University. Project Scope and Relevance.

Download Presentation

PI Dimitri J. Mavriplis University of Wyoming Co-PI Luigi Martinelli Princeton University

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High-Order Spatial and Temporal Methods for Simulation and Sensitivity Analysis of High-Speed Flows PI Dimitri J. Mavriplis University of Wyoming Co-PI Luigi Martinelli Princeton University

  2. Project Scope and Relevance • Develop novel approaches for improving simulation capabilities for high-speed flows • Emerging consensus about higher-order methods • May be only way to get desired accuracy • Asymptotic arguments • Superior scalability • Sensitivity analysis and adjoint methods • Now seen as indispensible component of new emerging class of simulation tools • Automated (adaptive) solution process with certifiable accuracy • Other novel approaches: BGK methods

  3. Advantages of DG Discretizations 2.5 million cell DG (h-p Multigrid) • Superior Asymptotic Properties • Smaller meshes • Easier to generate/manage • Superior Scalability: small meshes on many cores • Dense kernels, well suited for GPUs, Cell processors

  4. Disadvantages of DG Discretizations • High-Risk, Revolutionary • Still no production level DG code for subsonics • Relies on smooth solution behavior to achieve favorable asymptotic accuracy • Difficulties for strong shocks • Robustness issues

  5. Overview of Current Work • Viscous discretizations and solvers for DG • ALE Formulation for moving meshes • BGK Flux flunction implementation/results • Shock capturing - Artificial dissipation - High-order filtering/limiting • Adjoint-based h-p refinement - Shocks captured with no limiting/added dissipation • Conclusions

  6. Extension to Viscous Flows • DG methods developed initially for hyperbolic problems • Diffusion terms for DG non-trivial • Interior Penalty (IP) method • Simplest approach, compact stencil • Explicit expression for penalty parameter derived (JCP) • IP method derived and implemented for compressible Navier-Stokes formulation up to p=5 • Studied symmetric and non-symmetric forms for IP • h and p independent convergence observed for Poisson and Navier-Stokes problems

  7. DG Navier-Stokes Solutions • Mach =0.5, Re =5000 • 2000 mesh elements • Non-symmetric grid

  8. DG Navier-Stokes Solutions • h-p multigrid convergence maintained (50 – 80 cycles) • Accuracy validated by comparison with high-resolution finite-volume results • Separation location ~ 81% chord (p=3) p=1: second-order accuracy p=3: fourth-order accuracy

  9. Solution of DG Discretization for NS Equations • h-p multigrid solver: h and p independent convergence rates • Used as preconditioner to GMRES for further efficiency improvements

  10. Kinetic Based Flux Formulations (BGK)L. Martinelli Princeton University • Alternative for extension to Navier-Stokes: • It is not necessary to compute the rate of strain tensor in order to calculate viscous fluxes • Automatic upwinding via the kinetic model. • Satisfy Entropy Condition (H-Theorem) at the discrete level. • Implemented in 2D Unstructured Finite-Volume code by Martinelli • Extension to 2D DG code under development

  11. BGK Finite Volume SolverMach 10 Cylinder • Robust 2nd order accurate solution • BGK –DG solutions obtained for low speed flows • BGK-DG cases with strong shocks initiated

  12. Treatment of Shock Waves • High-order (DG) methods based on smooth solution behavior • 3 approaches investigated for high-order shock wave simulation • Smoothing out shock: Artificial viscosity • Use IP method discussed previously • Sub-cell shock resolution possible • Limiting or Filtering High Order Solution • Remove spurious oscillations • Sub-cell shock resolution possible • h-p adaption • Start with p=0 (1st order) solution • Raise p (order) only were solution is smooth • Refine mesh (h) where solution is non-smooth (shock) • No limiting required!

  13. Shock Capturing with Artificial Dissipation (p=4) • IP Method used for artificial viscosity terms (Laplacian) • Artificial Viscosity scales as ~ h/p • An alternative to limiting or reducing accuracy in vicinity of non-smooth solutions (Persson and Peraire 2006)

  14. Shock Capturing with Artificial Dissipation • Sub-cell shock capturing resolution (p=4)

  15. Mach 6 Flow over Cylinder • Third order accurate (p=2) • Relatively coarse grid • Sub-cell shock resolution captured with artificial dissipation • Principal issue: Convergence/Robustness

  16. Total Variation based nonlinear Filtering where, • Euler-Lagrange equation (1st variation) Nonlinear partial differential equations (PDE) based • Pseudo-time stepping (Rudin, Osher and Fatemi 1992) • Solved locally in each element • Formulation • Minimization

  17. Total Variation based nonlinear Filtering Controls amount of filtering where, • Euler-Lagrange equation (1st variation) Nonlinear partial differential equations (PDE) based • Pseudo-time stepping (Rudin, Osher and Fatemi 1992) • Solved locally in each element • Formulation • Minimization

  18. Shock Capturing with Filteringp=3 (4th order accuracy) • Weak (transonic) shock captured with sub-cell resolution using filtering/limiting • Enables highest order polynomial without oscillations

  19. DG Filtering for High Speed Flows • Mach 6 flow over cylinder at p=2 (3rd order) • Lax Friedrichs flux Relatively robust Shock spread over more than one element

  20. DG Filtering for High Speed Flows • Mach 6 flow over cylinder at p=2 (3rd order) • Van-Leer Flux Relatively robust Thinner Shock spread over approximately one element

  21. DG Filtering for Strong Shocks Lax-Friedrichs Van Leer • Shock resolution determined by convergence robustness • (not necessarily property of flux function) • Van Leer flux could be run with larger filter l value • Higher order solutions should deliver higher resolution shocks • Convergence issues remain above p=2

  22. ADJOINT-BASED ERROR ESTIMATION NOT DESIRED! 22 • Formulation • Key objective functionals with engineering applications • Surface integrals of the flow-field variables • Lift, drag, integrated temperature, surface heat flux • A single objective, expressed as • Current mesh (coarse mesh, H) • Coarse flow solution, • Objective on the coarse mesh, • Globally refined mesh (fine mesh, h) • Fine flow solution, • Objective on the fine mesh, • Goal : find an approximate for without solving on the fine mesh

  23. ADJOINT-BASED ERROR ESTIMATION 23 • Formulation • Coarse grid solution projected onto fine grid gives non-zero residual • Change in objective calculated on fine grid: = inner product of residual with adjoint • Procedure • Compute coarse grid solution and adjoint • Project solution and adjoint to fine grid • Form inner product of residual and adjoint on fine grid • Global Error estimate of objective • Local error estimate (in each cell) • Use to drive adaptive refinement • Smoothness indicator used to choose between h and p refinement • Naturally maintains p=0 in shock region

  24. Combined h-p Refinement for Hypersonic Cases Target function of integrated temperature • hp-refinement • starting discretization order p = 0 (first-order accurate) 24 initial mesh: 17,072 elements High-speed flow over a half circular-cylinder (M∞=6)

  25. h-p Refinement for High-Speed Flows No shock refinement in regions not affecting surface temperature 25 High-speed flow over a half circular-cylinder (M∞=6) adapted mesh: 42,234 elements, discretization orders p=0~3

  26. h-p RefinementObjective=Surface TMach 6 Pressure Shock captured without limiting or dissipation Naturally remains at p=0 in shock region Mach Number 26

  27. h-p Refinement for Mach 10 Case Target function of drag 27 High-speed flow over a half circular-cylinder (M∞=10)

  28. H-p Refinement: Functional Convergence M ∞=6, functional: integrated temperature M ∞=10, functional: drag 28

  29. Conclusions and Future Work • DG methods hold promise for advancing state-of-the-art for difficult problems such as Hypersonics • Recent advances in: • Viscous discretizations • Flux functions (BGK) • ALE formulations • Solver technology (h-p multigrid) • Shock capturing • Extend into 3D DG parallel code • Diffusion terms • Shock capturing • h-p adaptivity (adjoint based) • Real gas effects • 5 species, 2 temperature model for DG code

  30. Remaining Difficulties • DG Methods need to be robust • Often requires accuracy reduction (limiting) • Shock capturing with artificial viscosity becomes very non-linear/difficult to converge for high p and high Mach • Limiting is very robust initially, but convergence to machine zero stalls • Other limiter formulations are possible • Adjoint h-p refinement is promising but will likely require use with limiter for necessary robustness • Linearization of limiter/filter

More Related