400 likes | 411 Views
Explore angular momentum projection and mean field methods in studying low-spin waves and yrast lines in rotating nuclei. Theoretical approaches to describe tidal wave vibrations and the antimagnetic rotor model are discussed.
E N D
Nuclear Tidal Waves Daniel Almehed Stefan Frauendorf Yongquin Gu Yang Sun
In the rotating frame: small oscillations around qp. excitations E I Yrast line of 5D-harmonic oscillator Tidal waves
E(5) like I Anharmonic oscillator
I-1/2 rotor tidal wave vibrator
I-1/2 rotor tidal wave vibrator
N= 92 90 88 86 84 No good vibrator!
Theoretical methods Fix the angular momentum or rotational frequency Find the static shape – use a mean field method Angular momentum projection: Projected shell model Cranking model: semiclassical treatment of angular momentum
harmonic QQ model +cranking Energy minimum (self-consistency) at:
AMR Tidal wave Cranking model • B(E2,I->I-2)[(eb)^2] • I exp calc • tidal wave • 0.09 0.07 • 0.18 0.17 • 6 0.24 0.22 • antimagnetic rotor • 0.15 0.10 • 0.11 0.10 • 16 0.12 0.10 Experiment: M. Piiparinen et al. NPA565 (93) 671 F. Courminboeuf et al. PRC 63 (00) 014305 R. Clark et al. private communication
Monopole Pairing+Quadrupole Pairing+QQ model Zero quasiparticle version: Two quasiparticle version: Diagonalize H in the basis Minimize lowest energy
Projected shell model • B(E2,I->I-2)[(eb)^2] • I exp calc • tidal wave • 0.09 0.07 • 0.18 0.13 • 0.24 0.16 • antimagnetic rotor • 0.15 0.14 • 0.11 0.15 • 16 0.12 0.16 AMR Tidal wave
High-spin waves Combination of Angular momentum reorientation Triaxial deformation
yrast D. Cullen et. al
TAC 25 26 27 28 Line distance: 20keV 29 30
Line distance: 200 keV
Tidal wave Less favored vibrations Mixed with p-h excitations
K=25 i (130 ns) P. Chowdhury et al NPA 484, 136 (1988) o t m s K=0 0 8 14 21 24 i m t s o
Tidal waves Yrast mode in soft nuclei at low and high spin Angular momentum generated by shape change at nearly constant angular velocity. Shape change: Axial, triaxial quadrupole, orientation, octupole … Rotating mean field gives a reliable microscopic description No new parameters Experimental rotational frequency well defined
AMR Tidal wave Cranking model • B(E2,I->I-2)[W.u.] • I exp calc • tidal wave • 23.0 (15) 18 • 46 (6) 43 • 6 62 (20) 56 • antimagnetic rotor • 39 (2) 25 • 29 (3) 25 • 16 25 25
Projected shell model • B(E2,I->I-2)[W.u.] • I exp calc • tidal wave • 23.0 (15) 18 • 46 (6) 33 • 6 62 (20) 41 • antimagnetic rotor • 39 (2) 36 • 29 (3) • 16 25 AMR Tidal wave