510 likes | 666 Views
STATISIK. LV Nr.: 1375 SS 2005 10. März 2005. Normalverteilung. Approximation durch Normalverteilung: Mit wachsendem n nähern sich viele theoretische Vt. der Normalverteilung Empirische Verteilungen lassen sich ebenfalls oft durch die N-Vt. annähern. Normalverteilung.
E N D
STATISIK LV Nr.: 1375 SS 2005 10. März 2005
Normalverteilung • Approximation durch Normalverteilung: Mit wachsendem n nähern sich viele theoretische Vt. der Normalverteilung • Empirische Verteilungen lassen sich ebenfalls oft durch die N-Vt. annähern.
Normalverteilung • Reproduktionseigenschaft (od. Additivitäts- eigenschaft) der Normal-Vt. • Additionstheorem der Normalverteilung: • Die Summe (X) von n unabhängig normalverteilten Zufallvariablen X1,…,Xn ist ebenfalls normalverteilt. X = X1 + … + Xn • Der Erwartungswert von X ist die Summe der einzelnen Erwartungswerte μ1,…,μn E(X) = μ=μ1 + … + μn • Die Varianz von X ist die Summe der einzelnen Varianzen σ1²,…σn² Var(X) = σ² = σ1²+ … + σn²
Stichproben • Aufgabe: Aussagen über Grundgesamtheit • Stichprobe (Kosten, Zeit, Möglichkeit) • Zufallsstichprobe (theoretisch fundierte Aussagen über Zuverlässigkeit der Ergebnisse sind möglich) • Quotenstichprobe (keine theoretisch fundierten Aussagen über die Zuverlässigkeit der Ergebnisse) • Stpr. heißt repräsentativ, wenn ein Schluss auf Grundgesamtheit erlaubt ist • Stichprobe „verkleinertes Abbild“ der Grundgesamtheit.
Stichproben • Arithmetische Mittel der Stichprobe: • Varianz der Stichprobe: • Anteilswert P einer Stichprobe:
Stichprobenverteilung • Verteilung des arithmetischen Mittels der Stichprobe (Zufallsstichprobe): • Zufallsvariable X1,…,Xn • Konkrete Realisation: x1,…,xn • Arithmetische Mittel: • Arithm. Mittel von ZV ist wieder eine ZV (Funktion von n ZV)
Stichprobenverteilung • Erwartungswert der Verteilung des arithmetischen Mittels: • Varianz der Verteilung des arithm. Mittels • Standardabweichung od. Standardfehler
Stichprobenverteilung • Erwartungswert u. Varianz bekannt • Verteilung des arithm. Mittels? • Annahme: Grundgesamtheit ist N(μ,σ²)-vt. • Reproduktionseigenschaft der N-Vt: Summe von n unabhängig normal-vt. ZV ist wieder n-vt • Daher ist auch das arithm. Mittel normalverteilt
Grenzwertsätze Verhalten des Mittelwert von n unabhängig identisch verteilten (i.i.d.) ZV X1,…,Xn, wenn n laufend erhöht wird (n→∞) • Gesetz der Großen Zahlen • Satz von Glivenko-Cantelli • Zentraler Grenzwertsatz
Grenzwertsätze • Gesetz der Großen Zahlen: • Beinhaltet die Aussage, dass sich der Mittelwert mit wachsendem n immer mehr um den gemeinsamen Erwartungswert µ der Xi konzentriert.
Grenzwertsätze • Gesetz der Großen Zahlen: • Beinhaltet die Aussage, dass der Wert der empirischen Verteilungsfunktion an der Stelle t mit wachsendem n gegen den entsprechenden Wert der Verteilungsfunktion von X konvergiert.
Grenzwertsätze • Satz von Glivenko-Cantelli: • Wert der empirischen Verteilungsfunktion konvergiert an der Stelle t mit wachsendem n gegen den entsprechenden Wert der Verteilungsfunktion von X.
Grenzwertsätze • Zentraler Grenzwertsatz: • Aussage über die Form der Verteilung des Mittelwertes (standardisierte ZV Zn). Die Verteilungsfunktion von Zn konvergiert gegen die Standardnormalverteilung (Φ … Vt-Fkt. der N(0,1) Vt.)
Grenzwertsätze • Aus dem Zentralen Grenzwertsatz folgt: Die Verteilung des arithm. Mittels von n unabhängig identisch verteilten Zufallsvariablen Xi (X1,…,Xn) strebt mit wachsendem Stichprobenumfang n gegen eine Normalverteilung mit dem Erwartungswert µ und Varianz σ²/n. • Gleichbedeutend: Das arithmetische Mittel ist „asymptotisch normalverteilt“. • Faustregel: n > 30, N-Vt. ist gute Näherung für die Vt. des arithmetischen Mittels der Stichprobe.
Stichprobenverteilung • Verteilung der Varianz S² der Stichprobe: • Annahme: Grundgesamtheit ist N(µ,σ²)-vt. Xi sind n unabhängige normal-vt. ZV mit E(Xi)=µ und Var(Xi)= σ² (i=1,…,n) • Stichprobenvarianz S² ist eine Funktion von n ZV Xi und somit wieder eine ZV.
Stichprobenverteilung • Verteilung der Varianz S² der Stichprobe: • Chi-Quadrat Verteilung mit v=n-1 Freiheitsgraden, χ²n-1 • Es gilt: • Ist Z² = Xi² + … + Xn² (Summe von n quadrierten unabhängigen N(0,1)-verteilten ZV Xi), dann folgt Z² einer Chi-Quadrat Verteilung mit v Freiheitsgraden. Anzahl der unabhängigen ZV, die Z² bilden, nennt man Anzahl der Freiheitsgrade.
Stichprobenverteilung • χ²v Verteilung: • Erwartungswert: E(Z²)=v • Varianz: Var(Z²)=2v • Mit wachsendem v nähert sich die χ²v Vt. einer N-Vt. mit Parametern µ=v und σ²=2v.
Stichprobenverteilung • Anteilswert P einer Stichprobe (P=X/n) • 2 Modelle: • Ziehen mit Zurücklegen • Ziehen ohne Zurücklegen • Bsp. Urne, N Kugeln, M schwarz, (N-M) weiße, ziehe n Kugeln (mit bzw. ohne Zurücklegen der gezogenen Kugeln), θ ist die Wahrscheinlichkeit für das Ziehen einer schwarzen Kugel.
Stichprobenverteilung • Ziehen mit Zurücklegen • Exakte Verteilung: Binomialverteilung Wahrscheinlichkeitsfunktion der ZV X: • Erwartungswert: E(X) = nθ • Varianz: Var(X) = nθ(1- θ)
Stichprobenverteilung • Ziehen mit Zurücklegen • Erwartungswert des Stichprobenanteilswertes P: E(P) = 1/n E(x) = θ • Varianz des Stichprobenanteilswertes P: Var(P) = 1/n² Var(X) = θ(1- θ) / n • Standardfehler des Anteilswertes:
Stichprobenverteilung • Approximation durch Normalverteilung (Faustregel: nθ(1- θ) ≥ 9) • Erwartungswert: E(P) = µ = nθ • Varianz: Var(P) = σP² = nθ(1- θ)
Stichprobenverteilung • Ziehen ohne Zurücklegen • Exakte Verteilung: Hypergeometrische Vt. • Wahrscheinlichkeitsfunktion der ZV X: • Erwartungswert: E(X) = n M/N • Varianz: Var(X) = nθ(1- θ) · (N-n)/(N-1)
Stichprobenverteilung • Ziehen ohne Zurücklegen: • Erwartungswert des Stichprobenanteilswertes: E(P) = 1/n E(X) = θ • Varianz des Stichprobenanteilswertes: Var(P) = 1/n² Var(X) = θ(1- θ)/n · (N-n)/(N-1) • Standardfehler des Anteilswertes: • Endlichkeitskorrektur = 1 setzen, wenn n bzgl. N sehr klein ist (Faustregel: n/N < 0,05)
Stichprobenverteilung • Approximation durch Normalverteilung µ = E(P) = θ σ² = Var(P) = θ(1- θ)/n · (N-n)/(N-1)
Stichprobenverteilung • Die Stichprobenverteilungen des arithmetischen Mittels, der Varianz und des Anteilswertes können also durch die Normalverteilung approximiert werden.
Stichprobenverteilung • Differenz zweier arithmetischer Mittel: • Annahmen: • 2 unabhängige Stichproben • Beide Grundgesamtheiten sind annähernd N-vt • Stichprobenverteilung der Differenz: N-Vt • Erwartungswert: • Varianz:
Stichprobenverteilung • Differenz zweier Anteilswerte: • Annahmen: • 2 unabhängige Stichproben • P1,P2 annähernd n-vt. und N1, N2 so groß, dass Endlichkeitskorrektur vernachlässigbar ist. • Stichprobenverteilung: N-Vt • Erwartungswert: • Varianz:
Stichprobenverteilung • Quotient zweier Varianzen: • Annahmen: • 2 unabhängige Stichproben (n1, n2) • σ1² und σ2² aus n-vt Grundgesamtheiten • Quotient:
Stichprobenverteilung • Stichprobenverteilung: F-Verteilung mit v1 und v2 Freiheitsgraden, Fv1,v2. Für v2 > 2 gilt: • Erwartungswert: E(F) = v2 / (v2-2) • Varianz:
Schätzverfahren • Schluss von der Grundgesamtheit auf eine Stichprobe: Inklusionsschluss (direkter Schluss) • Schluss von einer Stichprobe auf Parameter einer Grundgesamtheit: Repräsentationsschluss (indirekter Schluss) • Unterscheidung: • Punktschätzer (einziger Schätzwert) • Intervallschätzer (Konfidenzintervall)
Schätzverfahren • Punktschätzer: Für den zu schätzenden Parameter wird nur ein einziger Schätzwert angegeben. • Bsp. Schätze das unbekannte arithm. Mittel einer Grundgesamtheit μdurch das arithm. Mittel der Stichprobe • Vorsicht: Die in einer Stichprobe realisierten Merkmalsausprägungen sind zufallsabhängig, Punktschätzer stimmen daher nur in den seltensten Fällen mit dem wahren Parameter überein.
Schätzverfahren • Intervallschätzer: Ausgehend von einer Stichprobe wird ein Intervall bestimmt, in dem der zu schätzende Parameter der Grundgesamtheit mit einer bestimmten vorgegebenen Wahrscheinlichkeit liegt (Konfidenzintervall). • Irrtumswahrscheinlichkeit ≤α • Konfidenzintervall zum Niveau 1-α (Vertrauensbereich od. Vertrauensintervall)
Schätzverfahren • Ges: Konfidenzintervall für das arithm. Mittel: ZV • Symmetrische Wahrscheinlichkeitsintervall • Symmetrie: z(α /2) = –z(1-α/2) daher: z = –z(1-α/2) und –z = z(α /2) und
Schätzverfahren • In diesem Wahrscheinlichkeitsintervall liegt das arithm. Mittel mit der Wahrscheinlichkeit 1- α. • Gesucht ist ist aber nicht das Ws-Intervall der ZV, sondern das Konfidenzintervall für das unbekannte arithm. Mittel µ der Grundgesamtheit. • Varianz σ² der Grundgesamtheit bekannt • Varianz σ² der Grundgesamtheit unbekannt
Schätzverfahren • Konfidenzintervall für µ bei bekannter Varianz σ² der Grundgesamtheit: Konkreter Stichprobenmittelwert
Schätzverfahren • Konfidenzintervall für µ bei unbekannter Varianz σ² der Grundgesamtheit: • Statt der unbekannte Varianz σ² wird die Stichprobenvarianz S² verwendet. • Zufallsvariable: T ist t- verteilt mit v=n-1 Freiheitsgraden
Verteilungen • Es gilt: • Ist T der Quotient einer Standardnormalverteilung und der Quadratwurzel des Mittelwerts von n quadrierten unabhängigen N(0,1)-verteilten ZV Xi, dann folgt T einer t-Verteilung mit v=n Freiheitsgraden. • Zufallsvariable: T ist t- verteilt mit v=n Freiheitsgraden T~tn • t-Verteilung ist symmetrisch
Verteilungen • t-Verteilung mit v Freiheitsgraden: • Erwartungswert (für n>1): E(T) = 0 • Varianz (für n>2): Var(T) = n / (n-2) • Für n→∞ geht die t-Verteilung in die N(0,1) über. • Approximation durch N(0,1)-Vt für n ≥ 30
Schätzverfahren • Wahrscheinlichkeitsintervall für das arithm. Mittel bei unbekannter Varianz: • Wobei t = t(1-α/2);n-1= – t(α/2);n-1 die Punkte sind, bei denen die Verteilungsfunktion der t- Verteilung mit n-1 Freiheitsgraden die Werte 1-α/2 bzw. α/2 besitzt.
Schätzverfahren • Konfidenzintervall für das arithm. Mittel bei unbekannter Varianz: Konkreter Stichprobenmittelwert Konkrete Stichprobenvarianz
Schätzverfahren • Konfidenzintervall für den Anteilswert: • Ann. genügend großer Stichprobenumfang, d.h. Approximation durch N-Vt möglich, E(P) = θ und Var(P) = σP² • Standardisierte ZV:
Schätzverfahren • Wahrscheinlichkeitsintervall: • Konfidenzintervall: • Ist σP unbekannt, verwendet man stattdessen die Stichprobenvarianz des Anteilswertes als Schätzer.
Schätzverfahren • Konfidenzintervall für die Varianz • ZV (n-1)S² / σ² ist χ² verteilt mit v=n-1 Freiheitsgraden • Wahrscheinlichkeitsintervall: • Konfidenzintervall:
Stichprobenumfang • Bisher: • Geg: Stichprobenumfang n, Sicherheitsgrad 1-α • Ges: Konfidenzintervall • Jetzt: • Geg: Konfidenzintervall, Sicherheitsgrad 1-α • Ges: Stichprobenumfang • Absoluter Fehler Δμ = zσX ist ein Maß für die Genauigkeit der Schätzung • Breite des Konfidenzintervalls: 2Δμ
Stichprobenumfang • Frage: Welchen Stichprobenumfang benötigt man, um einen Parameter (arithm. Mittel) bei vorgegebener Genauigkeit und vorgegebenem Sicherheitsgrad zu schätzen?
Eigenschaften von Schätzern Eigenschaften von Schätzfunktionen: • Erwartungstreue • Effizienz • Konsistenz • Suffizienz
Eigenschaften von Schätzern • Erwartungstreue • Eine Schätzfunktion heißt erwartungstreu (unverzerrt, unbiased), wenn ihr Erwartungswert mit dem wahren Parameter übereinstimmt. • Bedingung: • Es gilt:
Eigenschaften von Schätzern • Effizienz: • Von 2 erwartungstreuen Schätzfunktionen gilt jene als effizienter (wirksamer), die die kleinere Varianz aufweist. • Eine Schätzfunktion heißt effizient, wenn folgende Bedingungen erfüllt sind:
Eigenschaften von Schätzern • Konsistenz: • Eine Schätzfunktion heißt konsistent, wenn der Schätzwert bei laufender Vergrößerung des Stichprobenumfangs (n→∞ oder n→N) mit dem zu schätzenden Parameter zusammenfällt.
Eigenschaften von Schätzern • Suffizienz: • Eine Schätzfunktion heißt suffizient (erschöpfend), wenn sie sämtliche Informationen über den zu schätzenden Parameter, welche die Stichprobe enthält ausschöpft.