570 likes | 714 Views
STATISIK. LV Nr.: 0021 WS 2005/06 25. Oktober 2005. Theoretische Verteilungen. Diskrete Verteilungen Binomialverteilung Hypergeometrische Verteilung Poissonverteilung ... Stetige Verteilungen Gleichverteilung Exponentialverteilung Normalverteilung Chi-Quadrat Verteilung
E N D
STATISIK LV Nr.: 0021 WS 2005/06 25. Oktober 2005
Theoretische Verteilungen • Diskrete Verteilungen • Binomialverteilung • Hypergeometrische Verteilung • Poissonverteilung • ... • Stetige Verteilungen • Gleichverteilung • Exponentialverteilung • Normalverteilung • Chi-Quadrat Verteilung • t-Verteilung (Studentverteilung) • F-Verteilung • ...
Binomialverteilung • Wahrscheinlichkeiten für die Häufigkeit des Eintreffens bestimmter Ereignisse bei Bernoulli-Experimenten berechnen. • Bernoulli-Experiment: Folge von Bernoulli-Versuchen. Urnenmodell mit Zurücklegen • Es gibt nur 2 mögliche Ausgänge: A und Ā • Wahrscheinlichkeiten für Eintreten von A (θ) und Ā (1- θ) sind konstant • Versuche sind voneinander unabhängig.
Binomialverteilung • Bsp. Bernoulli-Experiment: • fünfmaliges Werfen einer Münze, Zufallsvariable X „Anzahl der Zahlen“, Realisation x = 0, 1, 2, 3, 4, 5 • Wahrscheinlichkeiten für Eintreten von A: W(X=x) = f(x) = ?
Binomialverteilung • Wahrscheinlichkeit des Auftretens einer bestimmten Realisation x: W(X=x) = f(x) • Wahrscheinlichkeitsfunktion der Binomialverteilung:
Binomialverteilung • Bsp. Münzwurf (n=5), Wahrscheinlichkeit dass genau 2-mal Zahl geworfen wird: W(X=2)
Binomialverteilung • Wahrscheinlichkeit, dass die Zufallsvariable X höchstens den Wert x annimmt: Verteilungsfunktion FB(x;n,θ)
Binomialverteilung • Bsp. Münzwurf (n=5), Wahrscheinlichkeit dass höchstens 2-mal Zahl geworfen wird: W(X 2)
Binomialverteilung • Erwartungswert der Binomialverteilung: E(X) = n·θ • Varianz der Binomialverteilung: Var(X) = n·θ·(1-θ) • Bsp. Münzwurf: • E(X) = 5·0,5 = 2,5 • Var(X) = 5·0,5·(1-0,5) = 1,25
Hypergeometrische Verteilung • Urnenmodell Ziehen ohne Zurücklegen: • Urne mit N Kugeln (M schwarze, N-M weiße) • Zufallsstichprobe: ziehe n Kugeln ohne Zurücklegen • Wahrscheinlichkeit, dass unter den n gezogenen Kugeln genau x schwarze zu finden sind? • Ziehen ohne Zurücklegen, keine Berücksichtigung der Reihenfolge.
Hypergeometrische Verteilung • Urnenmodell: • Aus M schwarzen Kugeln genau x auswählen: Anzahl der Kombinationen • Aus N-M weißen Kugeln genau n-x auswählen: Anzahl der Kombinationen • Jede mögl. Stpr. „x schwarze aus M“ kann mit jeder mögl. Stpr. „n-x weiße aus N-M“ kombiniert werden. • Daher: Gesamtzahl der Möglichkeiten genau x schwarze zu ziehen: • Gesamtzahl der Möglichkeiten aus N Kugeln n zu ziehen:
Hypergeometrische Verteilung • Wahrscheinlichkeit genau x schwarz Kugeln zu ziehen: • Wahrscheinlichkeitsfunktion der Hypergeometrischen Verteilung:
Hypergeometrische Verteilung • Verteilungsfunktion: Summation der Einzelwahrscheinlichkeiten • Liefert Wahrscheinlichkeit für „höchstens x schwarze Kugeln“
Hypergeometrische Verteilung • Bsp. Sortiment von N=8 Dioden, es werden n=3 zufällig gezogen (ohne Zurücklegen), M=5 der Dioden sind defekt. • Ges: Wahrscheinlichkeit, dass genau 2 (=x) der 3 gezogenen Dioden defekt sind.
Hypergeometrische Verteilung • Erwartungswert: E(X) = n · M/N • Varianz Var(X) = n · M/N · (N-M)/N · (N-n)/(n-1) • Approximation durch Binomialverteilung: • Wenn N, M, N-M groß und n klein, Parameter der Binomialverteilung: θ = M/N • Faustregel: Approximation, wenn n/N < 0,05
Poissonverteilung • Verteilung seltener Ereignisse • Große Zahl von Versuchen n, Wahrscheinlichkeit θ für Auftreten eines Ereignisses sehr klein • Wahrscheinlichkeitsfunktion:
Poissonverteilung • Erwartungswert: E(X) = μ • Varianz: Var(X) = μ • Approximation der Binomialverteilung durch die Poissonverteilung: • n groß und θ klein, Parameter μ = n·θ • Faustregel: n > 10 und θ < 0,05. • Approximation der Hypergeometrischen Vt. • M/N = θ klein, N im Vergleich zu n groß, Parameter μ = n · M/N • Faustregel: M/N < 0,05 und n/N < 0,05
Poissonverteilung • Bsp. Wahrscheinlichkeit bei einer Prüfung von n=2000 Buchungen genau 3 (=x) Fehlbuchungen zu finden, Anteil der Fehlbuchungen: θ=0,001. • Poissonverteilung: μ = n·θ = 2
Gleichverteilung • Diskrete Zufallsvariable: • Jede der k möglichen Ausprägungen hat gleiche Wahrscheinlichkeit P(X=xi) = 1/k (i=1,…,k) • Bsp. Wahrscheinlichkeitsverteilung der Augenzahl eines idealen Würfels: P(X=xi) = 1/6 (i=1,…,6)
Gleichverteilung • Stetige Zufallsvariable: • Realisationen der stetigen Zufallsvariablen X liegen im Intervall [a;b] • Dichtefunktion: • P(x X x+Δx) = 1/(b-a) ·Δx
Gleichverteilung • Verteilungsfunktion (Integration der Dichte)
Gleichverteilung • Erwartungswert: E(X) = (a+b)/2 • Varianz: Var(X) = (b-a)² / 12 • Bsp. Wegzeit ist gleichverteilt im Intervall [30;40]. Ges. Wahrscheinlichkeit zw. 32 und 35 Min. zu benötigen. P(32 X 35) = 1/(b-a) ·Δx = 1/(40-30) · (35-32) = 0,3 Durchschnittlich benötigte Zeit: E(X) = 35
Normalverteilung • Wichtigste theoretische Verteilung: • Normalverteilung: • stetige Verteilung • symmetrische Dichtefunktion • S-förmige Verteilungsfunktion • Erwartungswert: E(X) = µ • Varianz: Var(X) = σ² • Maximum der Dichte bei x=µ • Wendepunkte bei x=µσ
Normalverteilungen • Normalverteilung: • Dichtefunktion (für -∞<x<+∞ und σ>0) : • Verteilungsfunktion:
Normalverteilung • Normalverteilungen mit unterschiedlichen Parametern
Normalverteilung • Verteilungsfunktion
Normalverteilung • Standardnormalverteilung: • Erwartungswert µ = 0 • Varianz σ² = 1 • Dichtefunktion:
Normalverteilung • Standardnormalverteilung
Normalverteilung • Approximation durch Normalverteilung: Mit wachsendem n nähern sich viele theoretische Vt. der Normalverteilung • Empirische Verteilungen lassen sich ebenfalls oft durch die N-Vt. annähern.
Normalverteilung • Reproduktionseigenschaft (od. Additivitäts- eigenschaft) der Normal-Vt. • Additionstheorem der Normalverteilung: • Die Summe (X) von n unabhängig normalverteilten Zufallvariablen X1,…,Xn ist ebenfalls normalverteilt. X = X1 + … + Xn • Der Erwartungswert von X ist die Summe der einzelnen Erwartungswerte μ1,…,μn E(X) = μ=μ1 + … + μn • Die Varianz von X ist die Summe der einzelnen Varianzen σ1²,…σn² Var(X) = σ² = σ1²+ … + σn²
Stichproben • Arithmetische Mittel der Stichprobe: • Varianz der Stichprobe: • Anteilswert P einer Stichprobe:
Stichprobenverteilung • Verteilung des arithmetischen Mittels der Stichprobe (Zufallsstichprobe): • Zufallsvariable X1,…,Xn • Konkrete Realisation: x1,…,xn • Arithmetische Mittel: • Arithm. Mittel von ZV ist wieder eine ZV (Funktion von n ZV)
Stichprobenverteilung • Erwartungswert der Verteilung des arithmetischen Mittels: • Varianz der Verteilung des arithm. Mittels • Standardabweichung od. Standardfehler
Stichprobenverteilung • Erwartungswert u. Varianz bekannt • Verteilung des arithm. Mittels? • Annahme: Grundgesamtheit ist N(μ,σ²)-vt. • Reproduktionseigenschaft der N-Vt: Summe von n unabhängig normal-vt. ZV ist wieder n-vt • Daher ist auch das arithm. Mittel normalverteilt
Grenzwertsätze Verhalten des Mittelwert von n unabhängig identisch verteilten (i.i.d.) ZV X1,…,Xn, wenn n laufend erhöht wird (n→∞) • Gesetz der Großen Zahlen • Satz von Glivenko-Cantelli • Zentraler Grenzwertsatz
Grenzwertsätze • Gesetz der Großen Zahlen: • Beinhaltet die Aussage, dass sich der Mittelwert mit wachsendem n immer mehr um den gemeinsamen Erwartungswert µ der Xi konzentriert.
Grenzwertsätze • Gesetz der Großen Zahlen: • Beinhaltet die Aussage, dass der Wert der empirischen Verteilungsfunktion an der Stelle t mit wachsendem n gegen den entsprechenden Wert der Verteilungsfunktion von X konvergiert.
Grenzwertsätze • Satz von Glivenko-Cantelli: • Wert der empirischen Verteilungsfunktion konvergiert an der Stelle t mit wachsendem n gegen den entsprechenden Wert der Verteilungsfunktion von X.
Grenzwertsätze • Zentraler Grenzwertsatz: • Aussage über die Form der Verteilung des Mittelwertes (standardisierte ZV Zn). Die Verteilungsfunktion von Zn konvergiert gegen die Standardnormalverteilung (Φ … Vt-Fkt. der N(0,1) Vt.)
Grenzwertsätze • Aus dem Zentralen Grenzwertsatz folgt: Die Verteilung des arithm. Mittels von n unabhängig identisch verteilten Zufallsvariablen Xi (X1,…,Xn) strebt mit wachsendem Stichprobenumfang n gegen eine Normalverteilung mit dem Erwartungswert µ und Varianz σ²/n. • Gleichbedeutend: Das arithmetische Mittel ist „asymptotisch normalverteilt“. • Faustregel: n > 30, N-Vt. ist gute Näherung für die Vt. des arithmetischen Mittels der Stichprobe.
Stichprobenverteilung • Verteilung der Varianz S² der Stichprobe: • Annahme: Grundgesamtheit ist N(µ,σ²)-vt. Xi sind n unabhängige normal-vt. ZV mit E(Xi)=µ und Var(Xi)= σ² (i=1,…,n) • Stichprobenvarianz S² ist eine Funktion von n ZV Xi und somit wieder eine ZV.
Stichprobenverteilung • Verteilung der Varianz S² der Stichprobe: • Chi-Quadrat Verteilung mit v=n-1 Freiheitsgraden, χ²n-1 • Es gilt: • Ist Z² = Xi² + … + Xn² (Summe von n quadrierten unabhängigen N(0,1)-verteilten ZV Xi), dann folgt Z² einer Chi-Quadrat Verteilung mit v Freiheitsgraden. Anzahl der unabhängigen ZV, die Z² bilden, nennt man Anzahl der Freiheitsgrade.
Stichprobenverteilung • χ²v Verteilung: • Erwartungswert: E(Z²)=v • Varianz: Var(Z²)=2v • Mit wachsendem v nähert sich die χ²v Vt. einer N-Vt. mit Parametern µ=v und σ²=2v.
Stichprobenverteilung • Anteilswert P einer Stichprobe (P=X/n) • 2 Modelle: • Ziehen mit Zurücklegen • Ziehen ohne Zurücklegen • Bsp. Urne, N Kugeln, M schwarz, (N-M) weiße, ziehe n Kugeln (mit bzw. ohne Zurücklegen der gezogenen Kugeln), θ ist die Wahrscheinlichkeit für das Ziehen einer schwarzen Kugel.
Stichprobenverteilung • Ziehen mit Zurücklegen • Exakte Verteilung: Binomialverteilung Wahrscheinlichkeitsfunktion der ZV X: • Erwartungswert: E(X) = nθ • Varianz: Var(X) = nθ(1- θ)
Stichprobenverteilung • Ziehen mit Zurücklegen • Erwartungswert des Stichprobenanteilswertes P: E(P) = 1/n E(x) = θ • Varianz des Stichprobenanteilswertes P: Var(P) = 1/n² Var(X) = θ(1- θ) / n • Standardfehler des Anteilswertes:
Stichprobenverteilung • Approximation durch Normalverteilung (Faustregel: nθ(1- θ) ≥ 9) • Erwartungswert: E(P) = µ = nθ • Varianz: Var(P) = σP² = nθ(1- θ)
Stichprobenverteilung • Ziehen ohne Zurücklegen • Exakte Verteilung: Hypergeometrische Vt. • Wahrscheinlichkeitsfunktion der ZV X: • Erwartungswert: E(X) = n M/N • Varianz: Var(X) = nθ(1- θ) · (N-n)/(N-1)