90 likes | 230 Views
Primary Research Team & Capabilities. URL: http://ikt.ui.sav.sk. Dept. of Parallel and Distributed Computing Research and Development Areas: Large-scale HPCN, Grid and MapReduce applications Intelligent and Knowledge oriented Technologies Experience from IST:
E N D
Primary Research Team & Capabilities URL: http://ikt.ui.sav.sk Dept. of Parallel and Distributed Computing Research and Development Areas: • Large-scale HPCN, Grid and MapReduce applications • Intelligent and Knowledge oriented Technologies Experience from IST: • 3 project in FP5: ANFAS, CrosGRID, Pellucid • 6 project in FP6: EGEE II, K-Wf Grid, DEGREE (coordinator),EGEE, int.eu.grid, MEDIGRID • 4 projects in FP7: Commius, Admire, Secricom, EGEE III Several National Projects (SPVV, VEGA, APVT) IKT Group Focus: • Information Processing (Large Scale) • Graph Processing • Information Extraction and Retrieval • Semantic Web • Knowledge oriented Technologies • Parallel and Distributed Information Processing Solutions: • SGDB: Simple Graph Database • gSemSearch: Graph based Semantic Search • Ontea: Pattern-based Semantic Annotation • ACoMA: KM tool in Email • EMBET: Recommendation System • Experts on MapReduce and IR (Nutch, Solr, Lucene) Director & leader of PDC: Dr. Ladislav Hluchý 11 November 2011
Large scale Text and Graph data processing Underlined are the technologies developed by IISAS Core Technology • Web crawling • Nutch + plugins • Full text indexing and search • lucene, Sorl • Information Extraction • Ontea, GATE • All above large scale • Hadoop, S4 • Graph processing and Querying • Simple Graph Database (SGDB) • gSemSearch • Neo4j • Blueprints 11 November 2011
Ontea: Information Extraction Tool http://ontea.sf.net • Regex patterns • Gazetteers • Resuls • Key-value pairs • Structured into trees • graphs • Transformers, Configuration • Automatic loading of extractors • Visual Annotation Tool • Integration with external tools • GATE, Stemers, Hadoop … • Multilingual tests • English, Slovak, Spanish, Italian 11 November 2011
Email Search Prototype • Use of Social Network from email • Includes extracted objects • Full text of extracted objects • Related objects discovered and ordered by spread activation on social network graph • Faceted search, navigation 11 November 2011
gSemSearch: Graph based Semantic Search • Graph/Network of interacting (interconnected) entities • Discovering relation in the Graph (network) using spread of activation algorithm • Showing relations of concrete type, e.g. telephone numbers related to a person • Navigation over related entities • Full-text search of the entities • User interface for search • User interaction with data (merging, deleting entities) with immediate impact on discovered relations • Tested on Email Enron Corpus • Email Social Network Search • http://ikt.ui.sav.sk/esns/ 11 November 2011
SGDB: Simple Graph Database • Storage for graphs • Optimized for graph traversing and spread of activation • Faster then Neo4j for graph traversing operations • Supports Blueprints API • https://simplegdb.svn.sourceforge.net/svnroot/simplegdb/Sgdb3 • Graph Database Benchmarks • Graph Traversal Benchmark for Graph Databases • http://ups.savba.sk/~marek/gbench.html • Blueprints API - possibility to test compliant Graph databases 11 November 2011
Future Direction: Relations Discovery in Large Graph Data • Motivation • Graph/Network data are everywhere: social networks, web, LinkedData, transactions, communication (email, phone). • Also text can be converted to graph. • Interconnecting graph data and searching for relations is crucial. • Approach • Forming semantic trees and graphs from text, web, communication, databases and LinkedData • User interaction with graph data in order to achieve integration and data cleansing • Users will do it, if user effort have immediate impact on search results 11 November 2011