310 likes | 513 Views
Confronting EPOS-LHC predictions on the charged particle and muon attenuation lengths of EAS with KASCADE-Grande data. J.C. Arteaga Velázquez for the KASCADE-Grande Collaboration Institute of Physics and Mathematics , Universidad Michoacana Morelia, Michoacan , Mexico.
E N D
Confronting EPOS-LHC predictionsonthechargedparticle and muon attenuationlengths of EAS with KASCADE-Grande data J.C. Arteaga Velázquez forthe KASCADE-Grande Collaboration Institute of Physics and Mathematics, Universidad Michoacana Morelia, Michoacan, Mexico Structure of thetalk: Introduction KASCADE experiment KASCADE-Grande experiment Analyses Results Summary J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 1
1) Introduction 1. Whatistheorigin of features in spectrum? 2. Where do they come from? 3. Whatistheirnature? 4. How do theyget accelerated? 5. Are therenearby sources? 6. Whereisthegalactic toextragalactic transition? F(E) = E- γ Concavity = -2.7 PDG 2013 = -3.1 = -2.9 ≈ -3.3 = -2.6 LHC(pp) J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 2
KarlsruheShowerCore and ArrayDetector Karlsruhe, Germany Study: - Origin of theknee - Composition - Energyspectrum - Arrivaldirection
KarlsruheShowerCore and ArrayDetector • Components: • - Groundarray (200 x 200 m2) • + 252 e/γ scintillatordetectors • + 192 μ detectors • - Central detector • + Calorimeter • + μ detectors • - Muon tracking detector • Observables: • Ne, Nμ, Nhadron • E = 1014 – 1017 eV J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 5
2) KASCADE experiment Unfolding of energyspectrafrom KASCADE data KascadeColl, Astrop. Phys. 47 (2013) 54 QGSJETII-02 QGSJETII-02 • PeVKnee in all-particlespectrumduetoknees of light components: • -H knee: E = 4 ·1015 eV • -He knee: E = 7 ·1015 eV • -C knee: E = 20 ·1015 eV • He & C almostequallyabundant. • KASCADE measurements of Fe • nucleionly up to < 1017 eV. • Whereisthe Fe knee? Knee position Z? J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 5
3) KASCADE-Grande experiment KASCADE-Grande detector (December 2003 – November 2012) E = 1016 - 1018 eV • Area: 0.5 km2 • 37x10 m2 scintillatordetec. • Distance: 140 m 4 KASCADE Observables -Ne -Nμ, ρμ, τμ -Nch, ρch, τch -Nh, ΣEh -Hμ, η W. D. Apel, NIMA620, 202 (2010) J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 6
3) KASCADE-Grande experiment KASCADE-Grande detector (December 2003 – November 2012) E = 1016 - 1018 eV MTD LOPES • Tunnel of • 5.5 m x 48 m • 3 layers of • streamer • tubes. • 128 m2/layer • 30 dipole • antennas • Triggered by • KASCADE- • Grande • 40 – 80 MHz • Area: 0.5 km2 • 37x10 m2 scintillatordetec. • Distance: 140 m 4 KASCADE Observables -Ne -Nμ, ρμ, τμ -Nch, ρch, τch -Nh, ΣEh -Hμ, η W. D. Apel, NIMA620, 202 (2010) J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 6
3) KASCADE-Grande experiment KASCADE-Grande detector (December 2003 – November 2012) E = 1016 - 1018 eV MTD LOPES • Tunnel of • 5.5 m x 48 m • 3 layers of • streamer • tubes. • 128 m2/layer • 30 dipole • antennas • Triggered by • KASCADE- • Grande • 40 – 80 MHz • Area: 0.5 km2 • 37x10 m2 scintillatordetec. • Distance: 140 m 4 KASCADE Nμ: Total μ ‘s E > 230 MeV; Nch: Total chargedparticles E > 3MeV; W. D. Apel, NIMA620, 202 (2010) J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 6
3) KASCADE-Grande experiment Energyspectrum: K-method • Compositionindependent • Performedfordifferentzenithanglebinsindependently of eachother KASCADE-Grande Coll., PRD87 (2013) W.D.Apel, Astrop. Phys. 36 (2012) 183 QGSJETII-02 Heavy (electronpoor) Light (electronrich) QGSJETII-02 J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 7
3) KASCADE-Grande experiment Energyspectrum: K-method W.D.Apel, Astrop. Phys. 36 (2012) 183 Correctedformigrationeffects QGSJETII-02 Concavity New knee J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 8
3) KASCADE-Grande experiment QGSJETII-02 Heavy component >3.5 σ • Dominant, it shows a knee at • Responsiblefor new knee in • allparticleenergyspectrum • Change in spectralindex: All KASCADE-Grande Coll., PRD87 (2013) Heavy J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 9
3) KASCADE-Grande experiment QGSJETII-02 Heavy component >3.5 σ • Dominant, it shows a knee at • Responsiblefor new knee in • allparticleenergyspectrum • Change in spectralindex: All KASCADE-Grande Coll., PRD87 (2013) Heavy Light Light component 5.8 σ • Shows anankle → Recovery • Responsibleforgalacticto • extragalactictransition? • Change in spectralindex: J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 9
3) KASCADE-Grande experiment QGSJETII-02 Heavy component >3.5 σ • Shows a knee at • Responsiblefor new knee in • allparticleenergyspectrum • Change in spectralindex: All KASCADE-Grande Coll., PRD87 (2013) Heavy γ2 γ1 * Light Light component 5.8 σ • Shows anankle at • Responsibleforgalacticto • extragalactictransition? • Change in spectralindex: * Theγ2 of heavy group≈γ1 of light group do theyhavethesameorigin? * J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 9
3) KASCADE-Grande experiment All-particleenergyspectrum Heavy massgroupspectrum QGSJETII-02 QGSJETII-04 SIBYLL 2.1 EPOS 1.99 KASCADE Grande Coll., Nucl. Phys. B (Proc. Suppl.), tobepublished KASCADE Grande Coll., Adv. in Space R. (2013) Main results are independent of both the method and the model: -) Shape of individual spectra is retained J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 10
3) KASCADE-Grande experiment Energyspectrum: Deconvolution θ < 18o Problem: FindEand Aof primaryCRsfromNch and N. ReconstructionPrecision Efficiency Air showerfluctuations KASCADE-Grande Coll., Astropart. Phys. 47 (2013) J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 11
3) KASCADE-Grande experiment Ironknee (E ≈ 80 PeV) Consistentwith position of break-off in heavy kneefrom K-method He+C+Si H Fe QGSJETII 02 KASCADE-Grande Coll., Astropart. Phys. 47 (2013) J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 12
3) KASCADE-Grande experiment Energyspectrumfrom S(500) Mean lnAfromμpseudorapidities See G. Toma’s Poster See P. Luczak’sTalk J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 13
3) KASCADE-Grande experiment Work in progress Combined KASCADE/KASCADE-Grande energyspectrum E = 1014-1018 eV. Test of hadronicinteractionmodels. Anisotropystudies. Limits of gamma-ray flux. Radio analysiswith LOPES & CROME. 6. KASCADE CosmicRay Data Center. A. Haungs, ICRC 2013 A. Chiavassa, ICRC 2013 1st harmonic E-W technique J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 14
4) Attenuationlengths • Goal: • To test hadronicinteractionmodels: QGSJETII-02/04, EPOS 1.99/LHC, SIBYLL 2.1 at veryhighenergieswith KASCADE-Grande. • Employ EAS data onmuons & chargedparticles • Strategy: • Analyzezenithangledependence of NμandNchin theatmosphere. • Attenuationlengths • Compare predictions of hadronicinteractionmodelsagainst experimental estimations. • Use MC predictionsforProtons and Ironnuclei J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 15
4) Analyses • Data sample: • December 2003 – November 2012 • Effectiveobservation time: 1434 days • Selectioncuts: • Central area: 370 x 520 m2. • < 40o (N ≥ 3.98 x104). • No experimental problems. • Stable DAQ. • All muon clustersworking. Exposure: J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 16
4) Analyses • MC sample: • QGSJETII-02/04 • EPOS 1.99/LHC • SIBYLL 2.1 * • Simulatedspectra: • Purecomposition: • H, He, C, Si, Fe • Mixedcomposition • (primaryelementsonequal • abundances) • Eγ, γ= -2 • reweightedtohave • γ = -2.8, -3, -3.2 Fulllefficiency: log10 (E/GeV) ~ 6.8 - 7.2 Threshold: log10 (Nμ) ~ 4.8 - 5.2 *Bandstakeintoaccountvariationamongdifferentmodels J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 17
4) Analyses QGSJET II-02 3-5% * * N NAccuracy (%) 15% Mean accuracy (in region of full efficiency) • δNμ < 20% • δNch < 20% • δθ ~ 0.4° *Bandstakeintoaccountvariationamongdifferentmodels J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 18
4) Analyses * * * * Allmuon data iscorrectedforsystematicerrors(using a correctionfunctionderivedfrom QGSJETII-02) *Bandstakeintoaccountvariationamongdifferentmodels J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 19
4) Analyses ConstantIntensityCutMethod • Getattenuation curves. • Applya global fittogetΛμ. 1 2 • Applycutsat fixedfrequencies. J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 20
5) Results KASCADE-Grande data Syst.& Stat. errors included MC (CORSIKA/FLUKA): γ = -2.8, -3.0, -3.2 H, Fe and mixed composition Syst.& Stat. errors included * Discrepancies between MC and experimental data *For EPOS-LHC results are preliminary J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 21
5) Results Whatweknow up tonow: Statistical and systematicuncertainties do notexplainthedifference Maincontributionstosystematic error of measuredvalue: J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 22
5) Results Whatweknow up tonow: Statistical and systematicuncertainties do notexplainthedifference Othersystematicerrorsderivedfrom MC studies J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 23
5) Results A. Yushkov j.EPJ W. of Conf. 53, PAO 2013 KASCADE-Grande Auger • Observeddifferencesbetweenobserved and predictedΛμmayimply • more muons in experimental data at highzenithanglesthan in simulations. • ThatmaybecorrelatedwithAuger´smuon deficitproblem at higher • energies. J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 24
5) Results KASCADE-Grande data: Systematics on Nch (calculated from MC data) increase lower error limit. Better agreement between MC and experimental data *For EPOS-LHC results are preliminary J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 25
6) Summary KASCADE-Grande results on Nμ and Nch attenuation lengths: • At E=1016-1018eV, none of the hadronic interaction models (QGSJET II, EPOS 1.99, SIBYLL 2.1, QGSJETII-04, EPOS-LHC) is able to describe the Nμ(θ) data of KASCADE-Grande consistently. • The measured Λμis bigger than the MC values. • At high zenith angles more muonsare observed in the experiment than in MC simulations. • The measured Λchis in better agremeent with MC predictions. • Results from EPOS-LHC for Λμand Λch are closer to the experimental observations than the ones from other hadronic interaction models. J.C.Arteaga – Attenuationlengths/KASCADE-Grande ISVHECRI 2014 26