1 / 39

Novel Probes for Fermionic Gases

Novel Probes for Fermionic Gases. J. Meineke, T. Müller, B. Zimmermann, D. Stadler J.-P. Brantut, H. Moritz, T. Esslinger ETH Zürich. Experimental setup. Microscope objectives. 6 Li atoms. Microscope setup. Microscope setup. High-resolution imaging system:

tilly
Download Presentation

Novel Probes for Fermionic Gases

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Novel Probes for Fermionic Gases J. Meineke, T. Müller, B. Zimmermann, D. Stadler J.-P. Brantut, H. Moritz, T. Esslinger ETH Zürich

  2. Experimental setup Microscope objectives 6Li atoms

  3. Microscope setup

  4. Microscope setup • High-resolution imaging system: • resolution: 660nm (FWHM) for =671nm • NA = 0.53, magnification factor: 54

  5. Microscopic manipulation flexible micro-tweezers

  6. Atoms in micro-traps Square lattice Ring lattice a=2.5 mm  6.9 mm B. Zimmermann, T. Müller, J. Meineke, T. Esslinger, H. Moritz, New Journal of Physics 13, 043007 (2011)

  7. Imaging through the microscope high resolution imaging “standard” imaging 20μm 500mm • Information on • correlations, quantum statistics? • temperature, susceptibilities? • entanglement?

  8. Microscopic probing … … of in-situ density fluctuations

  9. Quantum statistics and fluctuations thermal quantum degenerate probe volume Suppressed density fluctuations in a degenerate Fermi gas due to Pauli principle! thermal higher order quantum correction For 1D Bose gases: J. Esteve et al., PRL 96,130403 (2006) & J. Armijo et al., PRL 105, 230402 (2010) For 2D Bose gases: C.-L. Hung, X. Zhang, Na. Gemelke, C. Chin, Nature 470, 236 (2011)

  10. Measurement of density fluctuations different realizations absorption imaging • Calculate mean and variance over many realizations • Account for photon shot noise and imaging effects Fluctuation in gas on a pixel Effect of imaging resolution

  11. Manifestation of antibunching Indication for the level of local quantum degeneracy Our work at ETH Zürich: PRL 105, 040401 (2010) Similar work at MIT in TOF: PRL 105, 040402 (2010)

  12. Thermodynamic properties local density approximation Compressibility κ Fluctuation-dissipation theorem: density fluctuations model independent measurement of temperature Q. Zhou and T. L. Ho, arXiv: 0908.3015, to appear in PRL; κin SF-MI: N. Gemelke, X. Zhang, C.-L. Hung, C. Chin, Nature 460, 995 (2009).

  13. Fluctuation-based thermometry Temperature: Conventional Fluctuation-based degenerate 20530nK 14531nK thermal 1,6 0.2 K 1,1 0.06 K T. Müller , B. Zimmermann, J. Meineke, J.-P. Brantut, T. Esslinger, H. Moritz, Phys. Rev. Lett. 105, 040401 (2010)

  14. Local Spin-Fluctuations Two-component quantum gas

  15. Atom-Light Interface Atoms Light Hammerer et al., Rev. Mod. Phys. 82, 1041 (2010)

  16. Atom-Light Interface Bruun et al., PRL 102, 030401 (2009)

  17. Measuring Spin-Polarization

  18. Measuring Spin-Polarization Phase Spin-polarization Speckle: Sanner et al., PRL 106, 010402 (2011)

  19. The Interferometer

  20. The Interferometer

  21. Performance Single component: Phase-shift proportional to atomic density

  22. Performance Photon shot-noise limited

  23. Results

  24. Distribution of Spin-Polarization Weakly interacting gas

  25. Distribution of Spin-Polarization Weakly interacting gas

  26. Distribution of Spin-Polarization Weakly interacting gas

  27. Distribution of Spin-Polarization Strong repulsive interactions

  28. Suppression of Spin-Fluctuations 9.2dB • Relative suppression • Agrees with theory for noninteracting Fermions • Analogous to suppression of density-fluctutations due to antibunching

  29. Spin-Susceptibility spin-susceptibility Measurements of spin-susceptibility: Salomon, Zwierlein, Ketterle

  30. Spin-Susceptibility spin-susceptibility

  31. Entanglement

  32. Entanglement Wiesniak et al., NJP 7, 258 (2005); Toth et al., PRA 79, 042334 (2009)

  33. Entanglement Adm2 (μm-2) Wiesniak et al., NJP 7, 258 (2005); Toth et al., PRA 79, 042334 (2009)

  34. NovelProbes Microscopicaccess mesoscopic systems thermodynamic properties fluctuations correlations

  35. Teamwork Henning Moritz Jakob Meineke David Stadler Torben Müller Sebastian Krinner Jean-Philippe Brantut Tilman Esslinger

  36. Data Processing

  37. Novel Probes for Fermionic Gases J. Meineke, T. Müller, B. Zimmermann, D. Stadler J.-P. Brantut, H. Moritz, T. Esslinger ETH Zürich

More Related