1 / 37

Investigating adjective denotation and collocation

Learn about the relationship between denotation and collocation in computational semantics, exploring assumptions, models, and empirical investigations. Discover the nuances of adjective-noun frequencies and grammaticality judgments.

tjackson
Download Presentation

Investigating adjective denotation and collocation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Investigating adjective denotation and collocation Ann Copestake Computer Laboratory, University of Cambridge

  2. Outline • introduction: compositional semantics, GL and semantic space models. denotation and collocation • distribution of `magnitude’ adjectives • hypotheses about adjective denotation and collocation • semi-productivity

  3. Themes • semi-productivity: extending paper in GL 2001 to phrases • statistical and symbolic models interacting • generation as well as analysis • computational account

  4. Different branches of computational semantics • compositional semantics: capture syntax, (some) close-class words and (some) morphology • every x [ dog’(x) -> bark’(x)] • large coverage grammars as testbed for GL (constructions, composition, underspecification) • lexical semantics, e.g., • GL (interacts with compositional semantics) • WordNet • meaning postulates etc • semantic space models, e.g., • LSA • Schütze (1995) • Lin (multiple papers), Pado and Lapata (2003)

  5. semantic spaces • acquired from corpora • generally, collect vectors of words which co-occur with the target • more sophisticated models incorporate syntactic relationships

  6. Semantic space models and compositional semantics? • do spaces correspond to predicates in compositional semantics? e.g., bark’ • attractions • automatic acquisition • similarity metrics, priming • fuzziness, meaning variation, sense clustering • statistical approximation to real world knowledge? (but fallacy with parse selection techniques) • problems • classical lexical semantic relations (hyponymy etc) aren’t captured well • can’t do inference • sensitivity to domain/corpus • role of collocation?

  7. Denotation: assumptions • Truth-conditional, logically formalisable (in principle), refers to `real world’ (extension) • Not necessarily decomposable: natural kinds (dog’ – canis familiaris), natural predicates • Naive physics, biology, etc • Computationally: specification of meaning that interfaces with non-linguistic components • Selectional restrictions? • bark’(x) -> dog’(x) or seal’(x) or ...

  8. Collocation: assumptions • Significant co-occurrences of words in syntactically interesting relationships • `syntactically interesting’: for this talk, attributive adjectives and the nouns they immediately precede • `significant’: statistically significant (but on what assumptions about baseline?) • Compositional, no idiosyncratic syntax etc (as opposed to multiword expression) • About language rather than the real world

  9. Collocation versus denotation • Whether an unusually frequent word pair is a collocation or not depends on assumptions about denotation: fix denotation to investigate collocation • Empirically: investigations using WordNet synsets (Pearce, 2001) • Anti-collocation: words that might be expected to go together and tend not to • e.g., ? flawless behaviour (Cruse, 1986): big rain (unless explained by denotation) • e.g., buy house is predictable on basis of denotation, shake fist is not

  10. Collocation and denotation investigations • can this notion of collocation be made precise, empirically testable? • assumptions about denotation determine whether something is a collocation • semantic space models will include collocational effects • initial, very preliminary, investigations with magnitude adjectives • attributive adjectives: can get corpus data without parsing • only one argument to consider

  11. Distribution of `magnitude’ adjectives: summary • some very frequent adjectives have magnitude-related meanings (e.g., heavy, high, big, large) • basic meaning with simple concrete entities • extended meaning with abstract nouns, non-concrete physical entities (high taxation, heavy rain) • extended uses more common than basic • not all magnitude adjectives – e.g. tall • nouns tend to occur with a limited subset of these extended adjectives • some apparent semantic groupings of nouns which go with particular adjectives, but not easily specified

  12. Some adjective-noun frequencies in the BNC

  13. Grammaticality judgments

  14. More examples

  15. Judgments

  16. Distribution • Investigated the distribution of heavy, high, big, large, strong, great, major with the most commonco-occurring nouns in the BNC • Nouns tend to occur with up to three of these adjectives with high frequency and low or zero frequency with the rest • My intuitive grammaticality judgments correlate but allow for some unseen combinations and disallow a few observed but very infrequent ones • big, major and great are grammatical with many nouns (but not frequent with most), strong and heavy are ungrammatical with most nouns, high and large intermediate

  17. heavy: groupings? magnitude: dew, rainstorm, downpour, rain, rainfall, snowfall, fall, snow, shower: frost, spindrift: clouds, mist, fog: flow, flooding, bleeding, period, traffic: demands, reliance, workload, responsibility, emphasis, dependence: irony, sarcasm, criticism: infestation, soiling: loss, price, cost, expenditure, taxation, fine, penalty, damages, investment: punishment, sentence: fire, bombardment, casualties, defeat, fighting: burden, load, weight, pressure: crop: advertising: use, drinking: magnitude of verb: drinker, smoker: magnitude related? odour, perfume, scent, smell, whiff: lunch: sea, surf, swell:

  18. high: groupings? magnitude:esteem, status, regard, reputation, standing, calibre, value, priority; grade, quality, level; proportion, degree, incidence, frequency, number, prevalence, percentage; volume, speed, voltage, pressure, concentration, density, performance, temperature, energy, resolution, dose, wind; risk, cost, price, rate, inflation, tax, taxation, mortality, turnover, wage, income, productivity, unemployment, demand magnitude of verb: earner

  19. heavy and high • 50 nouns in BNC with the extended magnitude use of heavy with frequency 10 or more • 160 such nouns with high • Only 9 such nouns with both adjectives: price, pressure, investment, demand, rainfall, cost, costs, concentration, taxation

  20. Basic adjective denotation with simple concrete objects: high’(x) => zdim(x) > norm(zdim,type(x),c) heavy’(x) => wt(x) > norm(wt,type(x),c) where zdim is distance on vertical, wt is weight (measure functions, MF) norm(MF,class,context) is some standard for MF for class in context (high’ also requires selectional restriction – not animate)

  21. Metaphor • Different metaphors for different nouns (cf., Lakoff et al) • `high’ nouns measured with an upright scale: e.g., temperature: temperature is rising • `heavy’ nouns metaphorically like burden: e.g., workload: her workload is weighing on her • Empirical account of distribution? • predictability of noun classes? high volume? high and heavy taxation • adjective denotation for inference etc? via literal denotation? • Discussed again at end of talk

  22. Possible empirical accounts of distribution • Difference in denotation between `extended’ uses of adjectives • Grammaticized selectional restrictions/preferences • Lexical selection • stipulate Magn function with nouns (Meaning-Text Theory) • Semi-productivity / collocation • plus semantic back-off

  23. Computational semantics perspective • Require workable account of denotation: not too difficult to acquire, not over-specific • Require account of distribution for generation • Robustness and completeness • Can’t assume pragmatics / real world knowledge does the difficult bits!

  24. Denotation account of distribution • Denotation of adjective simply prevents it being possible with the noun. • heavy and high have different denotations heavy’(x) => MF(x) > norm(MF,type(x),c) & precipitation(x) or cost(x) or flow(x) or consumption(x)... (where rain(x) -> precipitation(x) and so on) • But: messy disjunction or multiple senses, open-ended, unlikely to be tractable. • e.g., heavy shower only for rain sense, not bathroom sense • Not falsifiable, but no motivation other than distribution. • Dictionary definitions can be seen as doing this (informally), but none account for observed distribution.

  25. Selectional restrictions and distribution • Assume the adjectives have the same denotation • Distribution via features in the lexicon • e.g., literal high selects for [ANIMATE false ] • approach used in the LinGO ERG for in/on in temporal expressions • grammaticized, so doesn’t need to be determined by denotation (though assume consistency) • can utilise qualia structure • Problem: can’t find a reasonable set of cross-cutting features! • Stipulative approach possible, but unattractive.

  26. Lexical selection • MTT approach • noun specifies its Magn adjective • in Mel’čuk and Polguère (1987), Magn is a function, but could modify to make it a set, or vary meanings • stipulative: if we’re going to do this, why not use a corpus directly?

  27. Collocational account of distribution • all the adjectives share a denotation corresponding to magnitude (more details later), distribution differences due to collocation, soft rather than hard constraints • linguistically: • adjective-noun combination is semi-productive • denotation and syntax allow heavy esteem etc, but speakers are sensitive to frequencies, prefer more frequent phrases with same meaning • cf morphology and sense extension: Briscoe and Copestake (1999) • blocking (but weaker than with morphology) • anti-collocations as reflection of semi-productivity

  28. Collocational account of distribution • computationally, fits with some current practice: • filter adjective-noun realisations according to n-grams (statistical generation – e.g., Langkilde and Knight) • use of co-occurrences in WSD • back-off techniques

  29. Collocational vs denotational differences heavy high Denotation difference low Collocation difference

  30. Back-off and analogy • back-off: decision for infrequent noun with no corpus evidence for specific magnitude adjective • based on productivity of adjective: number of nouns it occurs with • default to big • back-off also sensitive to word clusters • e.g., heavy spindrift because spindrift is semantically similar to snow • semantic space models: i.e., group according to distribution with other words • hence, adjective has some correlation with semantics of the noun

  31. Metaphor again • extended metaphor idea is consistent with idea that clusters for backoff are based on semantic space • words cluster according to how they co-occur • e.g., high words cluster with rise words? • but this doesn’t require that we interpret high literally and then coerce

  32. More details: denotation of extended adjective uses • mass: e.g., rain, and some plural e.g., casualties • cf much, many • inherent measure: e.g., grade, percentage, fine • other: e.g., rainstorm, defeat, bombardment • attribute in qualia has Magn – heavy rainstorm equivalent to storm with heavy rain • also heavy drinker etc

  33. More details • Different uses cross-cut adjective distinction and domain categories • Want to have single extended sense and some form of co-composition • Further complications: nouns with temporal duration • heavy rain – not the same as persistent rain • heavy fighting but heavy drinking • how much of this do we have to encode specifically?

  34. Connotation • heavy often has negative connotations • heavy fine but not ? heavy reward etc • heavy taxation versus high taxation • consistent with the semantic cluster / extended metaphor idea

  35. Necessary experiments • None of this is tested yet! • Specify denotation, check for accuracy • Implement semi-productivity model with back-off • Determine predictability of adjective based on noun alone • Extension to other adjectives? Magnitude adjectives may be more lexical than others.

  36. Conclusions • Testing collocational account of distribution requires fixing denotation • Magnitude adjectives: assume same denotation • more complex denotations would need different experiments • Semi-productivity at the phrasal level • Back-off account is crucial

  37. Some final comments • denotation, selectional restriction, collocation: choice between mechanisms? • ngrams for language models for speech recognition • variants of semantic space models that are less sensitive to collocation effects? • can we `remove’ collocation?

More Related