1 / 40

Cosmic Jets

Cosmic Jets. Neutrinos. as sources for high-energetic. Andreas Müller http://www.lsw.uni-heidelberg.de/~amueller/. Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg. 12. 12. 2002. Overview. Motivation The AGN paradigm Jet physics:

tonif
Download Presentation

Cosmic Jets

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cosmic Jets Neutrinos as sources for high-energetic Andreas Müller http://www.lsw.uni-heidelberg.de/~amueller/ Theoriegruppe Prof. Camenzind Landessternwarte Königstuhl, Heidelberg 12. 12. 2002

  2. Overview • Motivation • The AGN paradigm • Jet physics: Formation, collimation, morphology • Particle acceleration • Jet simulations and sources • Relativistic leptonic and hadronic Jets • Ultra-relativistic GRB Jets • Cosmic Rays • Proton Blazars • AGN neutrino flux • Microquasars • Microquasar neutrino fluxes • Implications of UHE neutrino astronomy • Surprise!

  3. p + p _ p+ + X CC _ p- + X CC EN > 300 MeV _ p0 + X NC p + g_ p0 + p photopion production (inelastic scattering) p + g_ p+ + n escape via isospin flip p-_ m- + nm p+ _ m+ + nm p0 _ g + g m-_ e- + ne + nm m+ _ e+ + ne + nm Motivation hadrons neutrinos

  4. Cosmic neutrino sources • Galactic sources: Sgr A* SN SNRs Microquasars • Extragalactic sources: GRBs GRBRs AGN Jets constraint: AMANDA threshold 50 GeV

  5. IR UV Xg opt AGN type 1 multi-wavelength spectrum 3 bumps

  6. AGN taxonomy

  7. Kerr black hole topology

  8. Jet formation - theory • Kerr black hole vital: frame dragging in ergosphere • ergospheric dynamo: creates and sustains toroidal magnetic flux and currents • extraction of rotational energy of Kerr hole • outgoing wind driven by MHD Alfvén waves • reconnection: plasma decouples from magnetic field as approaching to horizon (restatement of No-Hair theorem) • magnetized accretion disk: energy of accreting plasma powers the wind (B. Punsly, BH GHM, Springer 2001)

  9. Jet formation - simulation log(r) from 0.1 to 100 color-coded, arrows: velocity, solid line: magnetic field parameters: a = 0.95, t = 65 rS, vJet = 0.93c, g = 2.7 (Koide et al., 2001)

  10. Lorentz force: electric current in jet plasma • toroidal mag. field BF • FII: acceleration • total magnetic field B • FI: collimation additional dependencies: • gas pressure • centrifugal forces • ambient pressure MHD-Jet collimation and acceleration

  11. Particle acceleration • Lorentz forces and gas pressure in Jets • Fermi acceleration • 1st order: relativistic shock waves propagate through turbulent plasma accelerating charged particles • 2nd order: stochastical acceleration of particles when diffusing through turbulent plasma • macroscopic kinetic energy of plasma transfered to few charged particles! • shock fronts Jets: internal shocks, bow shock GRBs: fireball shock SNs/SNRs: blast wave shock (ApJS 141, 195-209, 2002, Albuquerque et al.)

  12. Jet morphology

  13. Jet simulation cocoon shocked ext. medium bow shock r t = 1.64 Myr M. Krause, LSW HD

  14. Jet – emission knots periodic bright knots associated with inner shocks (rarefaction & compression) complete linear size: 159 kpc z = 1.112

  15. Radio Jet – Cyg A VLA jet and counter-jet, core, hot spots, lobes Synchrotron emission in radio from relativistic e- false color image: red is brightest radio, blue fainter. D ~ 200 Mpc

  16. X-ray Jet – Cyg A Chandra X-ray cavity formed by powerful jets hot spots clearly visible in 100 kpc distance away from core surrounding is hot cluster gas T ~ 107 to 108 K resulting topology: prolate/cigar-shaped cavity

  17. Relativistic hadronic and leptonic Jets • 3 models: BC – baryonic cold LC – leptonic cold LH – leptonic hot • leptonic species: e-e+ (rel.) • hadronic species: p, He (th.) • Relativistic Hydrodynamics (RHD) in 2D • NEC SX-5 Supercomputer • jet kinetic power: 1044 to 1047 erg/s • typical lifetime: 10 Myr • surprisingly similar dynamic and morphology! log(r) (Scheck et al., 2002)

  18. Relativistic hadronic and leptonic Jets lowest G highest G Lorentz factor G after 6.3 Myr (Scheck et al., 2002)

  19. 1.8 s after explosion • = 10 a v = 0.995c • axis unit: 100 000 km • contour: • vr > 0.3c • eint > 0.05 e0 • Jet: • 8° opening angle • Jet core: • 99.97% c Relativistic GRB-Jet G outer stellar atmosphere stellar surface M.A. Aloy, E. Müller; MPA Garching

  20. Cosmic Rays • ultra high-energy CR: 1019 eV < E < 1020 eV • 1st reported by Fly‘s Eye, AGASA air shower detectors • CR sources: homogeneous distributed and cosmological • candidates: GRBs (cp. BATSE @ CGRO) AGN Jets: photo-produced p0 decay to gg • CR sources generate UHE protons • each has power-law differential proton spectrum: dN/dE ~ E-a • spectrum insensitive to source evolution with z and cosmological parameters (H0) • observable constraint: 1.8 < a < 2.8 • often assumed: a = 2.0 • neutrinos overtake a-value if secondary from p-p reaction! • in p-g reactions weighting with photon power law • WB limit: neutrino flux limited by parental proton energy! (ApJ 425, L1-L4, 1995, Waxman; Waxman & Bahcall, 1999, 2001)

  21. CR spectrum ECR > 1017 eV (astro-ph/0011524, Gaisser)

  22. Proton Jet reactions

  23. non-conservative approach! (alternative to IC of accretion disk thermal UV emission on accelerated electrons) • proton acceleration in most powerful AGN Jets • power law distribution: np(Ep)~Ep-s • protons hit • p-target yields n: Qppn(En)~ En-s neutrino production rate • g-target yields: • CMB: Greisen-Zatsepin-Kuz‘min cut-off (1966): • Ep < 1019 eV „intergalactic proton“ • Synchrotron spectrum with ng(Eg)~ Eg-a: Qpgn(En)~ En-(s-a) • protons undergo unsaturated synchrotron cascades and emit Xg, electrons: synchrotron contributions • drastic steepening of cascade spectrum above Eg ~ 100 GeV: absorption of Xg by host galaxy IR-photons from dust • BUT: neutrinos not dampend! Proton blazar model (astro-ph/9306005, 9502085, 0202074, Mannheim)

  24. Proton blazar 1218+258 Data: NED Montigny et al. 1994 Fink et al. Whipple group • fit parameters: q = 7° gjet = 5 gp = 2 x 109 d = 7 B = 4 G (astro-ph/9502085, Mannheim)

  25. Quasar 3C273 –predicted neutrino flux • nmfluxes • compared with SNRs and Coma galaxy cluster • n oscillations neglected! (astro-ph/0202074, Hettlage & Mannheim)

  26. Microquasars Chandra homepage

  27. MicroquasarCyg X-3 • discovery in 1967 (Giacconi et al.) • companion: massive Wolf-Rayet as can be observed from wind in I- and K-band (van Kerkwijk et al., 1992) • orbital period: 4.8 h derived from IR and X-ray flux modulation via eclipses (Parsignault et al, 1972; Mason et al., 1986) • TeV source! • optical observation possible (extinction in Galactic plane) • CO nature: NS of ~ 1 M8 with 10-7 M8/yr and WR with 15 M8 (Heuvel & de Loore, 1973) vs. stellar BH with WR of 2.5 M8 (Vanbeveren et al., 1998; McCollough, 1999) • 1st only one-sided jet (Mioduszewski et al., 1998)

  28. MicroquasarCyg X-3 • evolution sequence of bipolar radio jet • binary system: Wolf-Rayet and NS/BH • D = 10 kpc • q = 14° • b = 0.81 (Mioduszewski et al., 2001) VLBA

  29. MicroquasarGRS1915+105 • evolution sequence of one-sided radio blob • binary system: normal star and BH • GBHC: MBH ~ 14 M8 • D = 12.5 kpc • q = 70° • b = 0.92! (Mirabel & Rodriguez, 1994) VLA

  30. most enigmatic and still unique object in the sky! • CO: neutron star or black hole? • companion: OB star with 20 M8 • mass loss rate: 10-4 M8/yr (wind) • orbital period: 13.1 d • persistent source • 1977 discovered, constellation Eagle • d = 3 kpc • i = 79° • b = 0.26 (nearly const!) • no continuous jet: bullets • slow wobbling period: 164 d • surrounded by diffuse nebular W50 (possible SNR) • jet: strong, variable Ha line emission • emission lines doubled • estimated: Ljet ~ 1039 erg/s SS 433 - data (ApJ 575, 378-383, 2002, Distefano, Guetta, Waxman & Levinson)

  31. ~ 20 cm SNR W50A SS 433

  32. SS 433 in X-rays T ~ 5 x 107 K d ~ 5 x 1018 km Chandra homepage 11.12. 2002

  33. SS 433 - theory • bullet ejection model • timescale: non-steady shocks in sub-Keplerian accretion flow • bullet shooting interval: 50-1000 s • donor matter rejection by centrifugal force • radiation pressure supported Keplerian disk • 15 to 20% of accreted matter is outflow: mean outflow rate: 1018 g/s • mean accumulated bullet mass 1019 - 1021 g (moon 1021 g) • bullet formation by shock oscillations due to inherent unsteady accretion solutions (astro-ph/0208148, Chakrabarti et al.)

  34. Microquasars - parameters Sn Ljet i G • all jets resolved in radio (~280 known XRBs, ~50 radio-loud) • SS 433 not present: more complicated model (ApJ 575, 378-383, 2002, Distefano, Guetta, Waxman & Levinson)

  35. Microquasars – m event predictions pulse periodic strong persistent: 1 yr integration time Dt (ApJ 575, 378-383, 2002, Distefano, Guetta, Waxman & Levinson)

  36. Implications of UHE neutrino astronomy • determination of two-component jet plasma: fixing the ratio of leptonic to hadronic species „Detection of n emitted by AGN would be a smoking gun for hadron acceleration.“ (Hettlage & Mannheim) • deeper insight in Jet physics generally • better understanding of microquasar physics • detection of low-inclined radio-hidden microquasars • verification of neutrino oscillations on cosmological scales • clarification of neutrinos as Majorana particles • CR mapping • new issues for the origin of UHE cosmic rays

  37. Most distant AGN Chandra SDSS quasars in 13 billion lightyears distance emission starts as Universe was 1 billion years old! MBH ~ 1010 M8 (Brandt et al., 2002)

More Related