1 / 29

Outline lecture (HL-1) Particle Production

Outline lecture (HL-1) Particle Production. Particle production in e + e - collisions Detection techniques Lepton pair production Resonances Non-resonant hadron production Gluon emission, jets Literature: Povh/Rith chapter 9 (particle production)

tracen
Download Presentation

Outline lecture (HL-1) Particle Production

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Outline lecture (HL-1)Particle Production • Particle production in e+e- collisions • Detection techniques • Lepton pair production • Resonances • Non-resonant hadron production • Gluon emission, jets • Literature: Povh/Rith chapter 9 (particle production) • Burcham/Jobes Chapter 2 (exp. techniques) Kernfysica: quarks, nucleonen en kernen

  2. particle production in e+e- collisions electromagnetic and weak processes space timemomentum Z0 Kernfysica: quarks, nucleonen en kernen

  3. Kernfysica: quarks, nucleonen en kernen

  4. L3 detector at LEP Kernfysica: quarks, nucleonen en kernen

  5. 2-jet event in ALEPH detector at LEP Kernfysica: quarks, nucleonen en kernen

  6. excursion to planned experiments at GSI Darmstadt (D)detector for 1.5 – 15 GeV/c reactions full solid angle, excellent energy and angle resolution for , K,  Kernfysica: quarks, nucleonen en kernen

  7. Simulated event in “Straw Tube Tracker” gas discharge in 5 mm  straws from Al-mylar foil, 26 m walls, 20 m sense wires (ca. 3 kV /cm) Kernfysica: quarks, nucleonen en kernen

  8. “oldfashioned” scintillator detectors with modern crystals and advanced photodiode readout Flash ADC Kernfysica: quarks, nucleonen en kernen

  9. from leptons to heavy quarks Kernfysica: quarks, nucleonen en kernen

  10. what is the mass of the  ?  lepton threshold production sharp increase of production ratio due to pair production Kernfysica: quarks, nucleonen en kernen

  11. e+ e- annihilation cross section pointlike (re <10-3 fm) spin=1/2 fermions f, Q2=s=4E2 with Nc colors, charge ezf, CM velocity , mfc2<<E 2 × × e ez E s d f = + J + - b J 2 2 2 N ( 1 cos ( 1 ) sin ) c + W 2 4 d Q m2 c f a 2 = + J + - b J 2 2 2 2 2 N z ( c ) ( 1 cos ( 1 ) sin ) h c f 4 s Kernfysica: quarks, nucleonen en kernen

  12. e+ e- annihilation measurement QED prediction lepton universality Kernfysica: quarks, nucleonen en kernen

  13. + - e- e+ hadronic states coupling to photon (JP=1-) e+, + -, e- e+e- scattering e- e+ interference e- e+ dominant process for e+e- production e- e+ intermediate hadron state timelike process spacelike process interference analysis for + - spin-parity analysis of resonances Kernfysica: quarks, nucleonen en kernen

  14. hadron resonances J/ production Breit-Wigner resonance cross section h low energy resonances ( , , ): 4    150 MeV typical hadronic lifetimes:  interpreted as bound states (JP=1-) e J/ resonance: e== 4.8 keV, h = 59 keV (lepton universality)  = 69 keV Kernfysica: quarks, nucleonen en kernen

  15. non-resonant hadron production primary qf looses energy by secondary formation: hadronisation process (1fm/c) hadron jets primary production for f flavours, Nc colours: Kernfysica: quarks, nucleonen en kernen

  16. evidence for 6 quark flavours hadron production ratio R must increase when passing f threshold Kernfysica: quarks, nucleonen en kernen

  17. hadron 3-jets: existence of gluons besides 2-jets from hadronisation: higher order processes 3-jet rate decreases with s=Q2 because of running of S Kernfysica: quarks, nucleonen en kernen

  18. Summary lecture (HL-1) • Particle production in e+e- collisions •  discovery • lepton universality • photon-hadron coupling • hadron resonances • quark flavours • existence of gluons • Literature: Povh/Rith chapter 9 (particle production) • Burcham/Jobes Chapter 2 (exp. techniques) Kernfysica: quarks, nucleonen en kernen

  19. Outline lecture (HL-1b)Weak Interaction • Particle production in e+e- collisions • Lepton pair production • Resonances • Non-resonant hadron production • Gluon emission, jets • Phenomenology of the weak interaction • Lepton families • Types of weak interaction • Coupling strength of charged current • Quark families • Parity violation • Literature: Povh/Rith chapter 10 Kernfysica: quarks, nucleonen en kernen

  20. Weak Interaction nuclear  decay short-range interaction heavy gauge bosons: m(W) = 80.4 GeV/c2, m(Z0) = 91.2 GeV/c2 P (parity) violation, CP (charge conjugation & parity) violation: lepton number conservation why 3 families? why mass hierarchy? CKM quark mixing matrix Kernfysica: quarks, nucleonen en kernen

  21. parity violation in nuclear  decay because  yield depends on spin orientation of nucleus: key experiment on 60Co (Mme. Wu , 1958) helicity h changes under P operation: Kernfysica: quarks, nucleonen en kernen

  22. W- 0 - n p W- W-   types of weak interactions leptonic semi-leptonic non-leptonic charged-current interactions W W- non-leptonic decays of strange hadrons: Kernfysica: quarks, nucleonen en kernen

  23. W- coupling strength (weak charge g) W boson couples to weak charge g: transition matrix element: very short-range interaction:  point interaction (Fermi Ansatz) strength  GF (Fermi constant) convenient definition: GFto be determined from  decay width: g g Kernfysica: quarks, nucleonen en kernen

  24. universality of weak interaction  decay width and lifetime: (if universal) Kernfysica: quarks, nucleonen en kernen

  25. W- W- g g sinC g g cosC u u d s weak charge universality weak coupling to quarks from semi-leptonic hadron decays: GFappears 4% smaller GFappears X20 smaller Cabibbo’s mixing hypothesis (1963), now in quark picture: mixing of partner flavour eigenstates, Cabibbo angle C for 2 families W+ W- sinC  0.22 exp. from semi-leptonic or hadronic decays: Kernfysica: quarks, nucleonen en kernen

  26. Change of decay rates by Cabibbo angle transition ratio Kernfysica: quarks, nucleonen en kernen

  27. W q Cabibbo-Kobayashi-Maskawa (CKM) matrix generalization to 3 quark families q’ gVqq’ Vqq’ correlated through unitarity: unitary triangle  3 real mixing angles, 1 phase factor (KM phase)  = f(123) KM phase to be determined from CP violation in B-decays (b  u) Kernfysica: quarks, nucleonen en kernen

  28. - s = -1/2 J=0 s = 1/2 helicity suppressed  decay semi-leptonic weak decay of - why so strong? (phase space  3.5 times larger!) h = +1 (?) h = +1 (!) h = +1 forbidden for lefthanded massless leptons! helicity only lorentzinvariant for massless particles : with mass: lefthanded component 1-  2.6 10-5 for e  0.72 for  Kernfysica: quarks, nucleonen en kernen

  29. Summary lecture (HL-1b) • Particle production in e+e- collisions •  discovery • lepton universality • photon-hadron coupling • hadron resonances • quark flavours • existence of gluons • Phenomenology of the weak interaction • parity violation • weak charge universality • quark mixing matrix Kernfysica: quarks, nucleonen en kernen

More Related