470 likes | 650 Views
90-Day Single-Launch to Mars: A Case Study for The Fusion-Driven Rocket. Anthony Pancotti John Slough, David Kirtley, George Votroubek, Christopher Pihl MSNW LLC, Redmond, WA 98052. FISO Telecon 09-‐25-‐13. 1. 2. 3. 4. Background Mission Architecture Design Spacecraft Design
E N D
90-DaySingle-LaunchtoMars: ACaseStudyforTheFusion-DrivenRocket AnthonyPancotti JohnSlough,DavidKirtley,George Votroubek,ChristopherPihl MSNWLLC,Redmond,WA98052 FISO Telecon 09-‐25-‐13
1. 2. 3. 4. Background MissionArchitectureDesign SpacecraftDesign FusionPhysics 2
Why We Are Not on Mars Yet? Takes too long Safety Costs too much Direct cost Radiation exposure Cancer risk Bone & muscle loss Mental fatigue Increased risk of Operational costs Complexity Pre-‐deploy assets Space assembly critical failure Launch costs Large space structures Huge fuel Mass Governmental support Political Public interest Solution: New method of propulsion is needed Short trip time Reduced IMLEO High () High Exit Velocity (Isp) 3
TheFusionDrivenRocket (a)Thinhoopsofmetalaredrivenattheproperangle andspeedforconvergenceontotargetplasmoidat thrusterthroat.TargetFRCplasmoidiscreatedand injectedintothrusterchamber. (b)TargetFRCisconfinedbyaxialmagneticfieldfrom shelldrivercoilsasittranslatesthroughchamber eventuallystagnatingatthethrusterthroat (c)Convergingshellsegmentsformfusionblanket compressingtargetFRCplasmoidtofusion conditions (d)Vaporizedandionizedbyfusionneutronsand alphas,theplasmablanketexpandsagainstthe divergentmagneticfieldresultingdirectedflowof themetalplasmaoutofthemagneticnozzle. SchematicoftheinductivelydrivenmetalpropellantcompressionofanFRC plasmoidforpropulsion 4
Magneto-‐Inertial Fusion Two Approaches Shell (liner) implosion driven by B from large axial currents in shell. Liner implosion from j x B force between external coil and induced liner currents Foil Liner Compression FRC plasmoid FRC Injector FDR Advantages: Magnetic Nozzle Liner Driver System MTF Issues: Extremely low inductance load difficult to drive (massively parallel HV caps and switches) Close proximity and electrical contact major collateral damage with each pulse Small FRC must be formed close to implosion marginal B for ignition w injector destruction Only inefficient 2D compression possible requires much larger driver energy Large driver coil easy to power with ample standoff Driver electrically isolated from liner and magnetically from fusion process Large FRC can be formed external to implosion with abundant B for ignition Full 3D compression can be realized for efficient compression and translation 5 John Slough, David Kirtley, George Votroubek, and Chris Pihl, Lithium Liner Compression of an FRC Plasmoid, 20th ANS TOFE, Aug 2012 -‐Driven
FDRoffersthefirstrealistic approachtofusion-basedpropulsion 1 2 3 4 5 6 6
1. 2. 3. 4. Background MissionArchitectureDesign SpacecraftDesign FusionPhysics 7
MissionStudies 350 300 250 200 150 100 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 FusionAssumptions: Ionizationcostis75MJ/kg CouplingEfficiencytolineris50% Thrustconversiont~90% Realisticlinermassare0.28kgto0.41kg CorrespondstoaGainof50to500 IgnitionFactorof5 Safetymarginof2:GF=GF(calc.)/2 Higherfusiongain andlongertriptimes resultinhigher payloadmassfraction FusionGain PaylodMassFraction PayloadMassFraction 50 200 0 0.8 MissionAssumptions: MassofPayload=61MT Habitat31MT 20 406080 TripTime(Days) 100 120 Aeroshell16MT DescentSystem14MT SpecificMassofcapacitors~1J/g SpecificMassofSolarElectricPanels200W/kg Tankagefractionof10%(tanks,structure, radiator,etc.) 0.7 0.6 0.5 0.4 0.3 150 100 Burntimeof~10days isoptimal PayloadMassFraction TotalGain PaylodMassFraction Payloadmassfraction=PayloadMass/Initial Mass SystemSpecificMass=DryMass/SEP(kg/kW) AnalysisforsingletransitoptimaltransittoMars FullpropulsivebrakingforMarsCapture-no 0.2 0.1 0 50 204060 BurnTime(Days) 80 aerobraking Anthony Pancotti, John Slough, David Kirtley, Micheal Pfaff, Christopher Pihl, George Votroubek, Design Architecture for the Fusion Driven , AIAA 48th JPC, July 2012 8
DeterminingtheOptimalMarsMission Opposition-class shortsurfacestaytimesatMars typically30to90days relativelyshorttotalround-tripmissiontimes 500to650days Conjunction-class long-durationsurfacestaytimes 500daysormore longtotalround-triptimes approximately900days minimum-energysolutionsforagivenlaunch opportunity Bothoptionsarewelloutsidethecurrentpermissibleexposurelimitofradiation Missiondowndesignapproach Mission Architecture Goal 90 Transit times to and from Mars Adequate stay time (30+ days) Single launch (130 MT IMLEO) No pre-‐deployed assets DRA 5 Payload mass (63 MT) Full propulsive MOI & EOI Reusable spacecraft (1)shortestoverallmissiontoreducethe associatedhumanhealthandreliability risks (2)adequatetimeonthesurfaceinwhich tomaximizethereturnofmission objectivesandscience (3)lowmissionmass,which,inturn, reducestheoverallcostandmission complexity missiondoesnot 9
210dayRound-trip MannedMarsMission 61MTpayload 27MT FusionEquation 83MT FDR 1 launch 134 MT (IMLEO) 210 days 8000 6000 4000 2000 Isp(s) 0 100 200 FusionGain 300 15MT 134MT Refuel Re-crew Forfuture missions (May19,2018) DRA 5.0 (NTP), 9 launches, 848.7 MT IMLEO, 1680 days Isp=5000s PowerInput=180kW Gain200 Power(Jet)=36MW SpacecraftMass=15MT PayloadMass=61MT
210dayRound-trip(MissionDetails) 50 40 30 20 10 DeltaV(km/s) 0 0 50 100 150 200 250 Time(Days) 4 x10 15 10 5 Mass(Kg) 0 0 50 100 150 200 250 Time(Days) 11
NearBodyManeuvers Maneuver V (km/s) T (days) Near BodySimplified Near Body Simplified TMI MOI TEI EOI Total 12.7 8.5 16.6 11.2 49.0 7.3 13.2 16.5 12 49.0 8.9 4.7 1.7 1.6 16.8 7.1 10.5 2.9 1.6 22.1 TMI TOI MOI TEI 12
FutureMissionStudies Mars SinglelaunchtoMars(OppositionClass) Missionrefinement LongStayMission(>500day)(ConjunctiveClass) Singletrip onorbitassembly Largers/c(fuellaunchedseparate) Pre-deploymissionarchitecture ClassicDRAstylewithpre-cursercargomission Ultra-fast(30day)transfers Jupiter Enterandexitgravitywell Moonmission NEO Samplereturn Redirection? 13
1. 2. 3. 4. Background MissionArchitectureDesign SpacecraftDesign FusionPhysics 14
SpacecraftScaling Mission Assumptions Payload mass Spacecraft mass IMLEO Earth Orbital Altitude 63 MT 15 MT ~130 MT 407 km Mars park orbit Total Mission Time Stay Time 1 250 x 33793 210 30 sol km days days Mission Architecture Design 5000 s 8000 6000 4000 2000 Isp(s) Propulsion Requirements Isp Jet Power Specific Power 36 MW 240 W/kg 0 100 200 FusionGain 300 15
PowerSystemScaling Gain of 200 2.4 MJ Input Energy @ 2 kJ/kg 1.2 MT of Capacitors 50% space de-‐rating 1.8 MT of Energy Storage Solar panels have flown on 99% of all space mission. ENERGY STORAGE 36 MW Jet Power Gain of 200 180 kW of Input power OR 400 kW at Mars 200 W/kg POWER SOURCE 500 W/kg to 1000 W/kg are speculated for the future Direct energy recovery from fusion reaction possible 2 MT of Solar Panels 16
MassBudget Spacecraft Component Energy storage3 Solar Panels6 Switches and cables5 Spacecraft structure1 Lithium containment vessel FRC Formation2 Propellant Feed mechanism Liner driver coils4 Thermal Management Magnetic Nozzle Margin Mass (MT) 1.8 2.0 1.8 3.8 0.1 0.2 1.2 0.3 1.1 0.2 2.5 Switches and cables equal to energy storage mass Simple aluminum coil, but most likely composites with We, Be, or Cu liners Thermal control, 10% heat rejection @ 1 kW/kg with a margin of 3X Spacecraft Mass Total Mass 15 63 56 134 FRC formation based of lab equipment Crew habitat (DRA5.0) Lithium Compound Propellant Propellant Feed roll of film ring formation and injection 20% Margin Payload mass fraction 46% 1.Fairings,supportstructure,communication,datahandlingACS,Batteries 2.HardwareresponsibleforformationandinjectionofFusionmaterial(FRC) 3.Capacitors(1.8MJ@1kJ/KG),switches,powerbus 4.Electromagneticcoilusedtodriveinductiveliner 5.Pulsedpowerelectroniccomponentsneedtochargeanddischargecapacitorbank 6.180kW@200W/kg 17
FusionDrivenRocketEngine ShadowShield MainCompressionCoils MagneticNozzle FRCFormation EngineTruss ShockAbsorbers Liner/PropellantInjector 18
SpacecraftLayout Considerations 36 caps 12 /ring 4.8 m Energy Storage Packing 1.6 m 10.5 m 11.3 MT Propellant spool Packing 5 m 45 m 19
FDRSpacecraftLayout SolarPanels Transit Habitat MarsLander Liner/Propellant FusionDrivenRocket Radiators Spline Truss Energy Storage
FutureDesignwork Support Structure Mission Dependent X X X Magnetic Nozzle coils Liner converging Mass (MT) 3.8 0.1 0.2 1.2 1.8 0.3 1.8 2.0 1.1 0.2 Fusion Dependent X X X X X X X X X Spacecraft Component Spacecraft structure Propellant tank FRC Formation Propellant Feed Energy storage Liner driver coils Switches and cables Solar Panels Thermal Management Nozzle TRL 4 5 4 2 7 3 6 8 5 2 Bias magnets Margin Spacecraft Mass Crew habitat Propellant Total Mass 2.5 15 61 56 134 FRC formation region Liner Drive coils X X X X X X X Liner start For a more accurate spacecraft design and total launch mass A more defined mission and fusion conditions are need 22
1. 2. 3. 4. Background MissionArchitectureDesign SpacecraftDesign FusionPhysics 23
Approach 1.Analytical 2.Computational 1D Liner Dynamic + Circuit 3D Structural compression (ANSYS) Neutronics 3.Experimental Validation 24
Field Reversed Configuration (FRC) Magnetic Field lines and Pressure Contours Be rs rc xs Bvac r rc Ls 2rs rs SOL R Ls z Flux Conservation External measurements of B yield FRC separatrix radius rs(z), FRC length Ls Bvac 1x2s Bext volume, position, velocity Radial Pressure Balance Simple cross-‐tube interferometric measurement with rs from yields n and T Axial Pressure Balance With above obtain plasma energy, Inventory, confinement times Key Equilibrium Relations: B2ext 20 1 x2s 2 P0 n0kT 1 FRC equilibrium constraints and the diagnostic measurements that together with the equilibrium relations that are employed to determine the basic parameters of the FRC equilibrium 25
Fusion Based on Inductively Driven Liner Compression of the FRC The energy within the FRC separatrix at peak compression is dominated by plasma energy that is in pressure balance with the edge magnetic field B0, so that one can write: B03 12 43 EL2MLvL 3n0kT03r0 r0 0 (1) The zero subscript indicates values at peak compression where rs~ r0and magnetic pressure balance (2n0kT0= B02 /20). dwell time Dat peak Fusion energy produced in the FRC during the compression: 4 vL 2r0 4 3 12 2 3 42 2 Efus 1.210 n0 v r0 1.110 n0T0 D (2) where n0 and T0 are the peak density and temperature, and where the liner shell dwell time at peak compression, D, ~ 2r0/vL 26
Fusion Based on Inductively Driven Liner Compression of the FRC (cont.) The usual approximation for the D-‐T fusion cross section in this temperature range: 1.1x10-‐31 T2(eV) was also assumed. Pressure balance, together with expressions (1) and (2) yields for the fusion gain: Efus EL ML l0 G B0 4.3x108M1L/2E11L/8 1.73103 where l0 (= 2r0) is the length of the FRC at peak compression. The last expression is obtained from adiabatic scaling laws and l0~r02/5~B01/5 EL~B02r02l0~B04/5 to express G in terms of the liner kinetic energy EL and mass ML only. Fusion Ignition will amplify gain by large factor. It is estimated that the total fusion gain GF ~ 5-‐10G. For a large margin of safety, it is assumed that: GF = 2.5G or, GF = 1.110-‐7 ML1/2 EL11/8 27
Comp-1DLinerCode SourceFreeRLCCircuit CircuitParameters R=3m L=20nH 420uF 40,000V LinerParameters r=0.41m w=6cm l=0.2mm dI dt dL dt dV dt V=L I +IR I=C 9 x10 changing inductance Solvedas2FirstOrderequations 0.015 0.01 0.005 1 0 -1 Thickness(m) LinerAcceleration(m/s2) 0 0.04 -2 2000 0 1 3 -4 x10 2 Time(s) Phase change 0 1 2 Time(s) 3 -4 x10 Various Current waveforms Ringing Crowbar Diode Magnetic flux diffusion Increasing Cross-‐section Linerresistance() 0.02 LinerVelocity(m/s) 0 Latent heat 12 Time(s) Resistivity -‐ (T) Latent heats Radiative cooling 0 1500 -2000 0 3 -4 x10 0 1 2 Time(s) 3 -4 x10 Energy conservation Dataforactualcoiland 0.4 0.2 1000 500 Temperature(K) LinerRadius(m) collectorplateused InFoilLinerCompression (FLC)Testbed 0 0 0 1 2 Time(s) 3 -4 x10 0 1 2 Time(s) 3 -4 x10 28
ANSYSExplicitDynamics®Calculations Three0.4mradius,5cmwide,0.2mm thickAluminumlinersconvergingonto astationarytesttarget. First3Dstructurecompressionof metallicliner Nogrossinstabilitieswereobserved duetothestructurerigidityofthe material Forcesarewellbeyondtheplastic deformationlimitofthematerial, resultinginauniformcompression Lowinternalenergyfromtheliner compressionwhichisdifferentfrom plasmaorthicklinercompression T=0µs T=40µs T=80µs T=120µs T=160µs T=195µs Linerbehavioragreedverywellwith1DLinerCode 29
FRCFusionatMSNW ofaHighTemperaturePlasmathroughMergingandCompressionof SupersonicFieldReversedConfigurationPlasmoids Fusion,2011 Fusion with this technique is proven, this is not another fantasy $5 M DOE-‐funded programs demonstrated high field compression of FRC to fusion conditions o o o o 2.3 keV Deuterium Ions >100 microsecond lifetimes of 1E22 plasma >1E12 D-‐D neutrons created in this program At only 1.2 Tesla! FRC programs at similar size demonstrated >3 ms lifetime 30
Experimental IDLUnityGainValidationExperimentatMSNW CADrenderingoftheFoil LinerCompression(FLC) testfacilityatMSNW 31 PictureoftheFDRvalidationexperiment constructionnowunderway.
ExperimentalResults 40 cm radius, 6 cm wide, 0.4 mm thick Aluminum liners 0.6 ANYSISMaxR 400 s 400 s 410 s 420 s Exp.R(30349) Exp.R(30331) Exp.R(30351) ANSYSMinR 1DCodeR 410 s 420 s 0.5 0.4 0.3 0.2 ¼ Power Aluminum Liner Testing for code Validation LinerRadius(m) 20 kV | 840 F |16 mil 0.1 430 430 0 s s 0 1 2 4 5 3 Time(s) 6 -4 x10 440 s 450 s 460 s 440 s 450 s 460 s 10 8 6 4 2 1DCodeB Exp.B(30351) MagneticFieldinGap(T) 0 0 1 2 3 Time(s) 4 5 6 -4 470 s 470 s x10 32
Summary Mission Assumptions Mission Architecture Goal 90 Transit times to and from Mars Single launch to Mars (130 MT IMLEO) No pre-‐deployed assets Payload mass Spacecraft mass IMLEO 63 MT 15 MT 130 MT 63 MT Payload mass Full propulsive MOI Full propulsive EOI Reusable spacecraft Earth Orbital Altitude Mars park orbit Total Mission Time Stay Time 407 1 210 30 km sol days days Halfway through Phase 2 NIAC Mission architecture Propulsion Requirements Spacecraft Design Fusion Physics Analytical Computational Experimental Isp Jet Power Specific Power Gain 5000 s 36 MW 240 W/kg 200 33
EstimatedTotalEquivalentDoses Currenttechnology (210days) NTP/NEP (150days) FusionDriven Rocket (30days) Marssortiemission (30daysstay) LongstayatMars base(525days) Solidbars calculationforspacecraftwithaminimumshield(5g/cm2Al) Dashedbars calculationsforathickshield(20g/cm2Al) Thecareerlimitis400mSvfora25yearoldfora3%riskoffatalcancer Thereisstillgreatuncertaintyastowhattheactualriskisforlongterm lowlevelexposure 35
Lindl-‐Widner Diagram with Magnetic Field Confinement Of the Fusion Alphas FDR The BRform of the L-‐W diagram. Ignition curves for different product BR. When the BR parameter exceeds the threshold value, the dT/dt > 0 region extends to 36 infinitely small Rand ignition becomes possible at any R.
AnticipatedParametersfrom FDRValidationExperiment FRCadiabatic scalinglaws InitialFRCsize,temp densityandenergy FRClifetime >>dwell~4s Inexperiment,FRC radialandaxial compressionswould occursimultaneously Finalfield similarto thatachieved inseveral flux compression expts. SubMJFRC Requiresonly 33%bankeff. FinalFRCparametersyieldafusiongainG=1.6(ML=0.18kgAl) 37
Material Constraints with Inductively Accelerated Liners The material properties relating to this resistive heating (electrical conductivity, melting point, heat capacity, etc.) can be characterized by a parameter gM tm22 0 I -‐ current flowing through the material cross-‐sectional area Idt gMA A = w , where w is the liner liner thickness. The driving force is simply the magnetic pressure (B2/2µ0) applied over the surface area of the metal facing the coil when in close proximity to the driving coil. The reasonably approximated as B = µ0I/w. One vm(m/s)2.5x10 (mm) Aluminum6061 4 Al vm(m/s)1.6x104 (mm) Lithium Li 38
ANSYSMaxwell®Calculations ofthe3DElectromagneticFields R B(T) 8 4 0 Solutionfora0.4mradiuscoildrivinga6cmwide,0.2mmthickAlliner. ThecircuitwasbasedonthecapacitorbankcurrentlyavailableattheUW PlasmaDynamicsLaboratory. Thespatialforcesonthelineratvarioustimesandradiiarecalculatedand usedasinputintothedynamiccalculationsimilartotheoneshownabove. Mutualinteractionbetweencoilsandlinerswillalsobeinvestigated. 39
TheoreticalValidationofKey FDRElements(peerreviewedpapers) Importanceof3Dcompression Superiorityofhigh FRCtarget Magneticfieldlimitsthermaland particleloss-evenwith(cold) wallconfinementand >1 Ignitionpossiblewithmagnetized plasmawhereR<<1butBR> 60T-cm. Magneticfieldwellwithinrange oflargerFRCs. Methodforproducing3Dliner implosionswithstand-off GenerationofFRCplasmatarget withsufficientmagnetizationand confinementforignition Methodforefficientconversionof plasma,radiation,andfusion energyinamannerthatprotects 40 FusionBasedontheInductively-DrivenLithiumLiner CompressionofanFRCPlasmoid JohnSlough,DavidKirtley,AnthonyPancotti,ChristopherPihl, GeorgeVotroubek (SubmittedtoJournalofFusionEnergy2012) andmagneticallyisolatesreactor
TheoreticalValidationofKey FDRElements(peerreviewedpapers) Demonstratedinductively drivenlinercompression ofBzfields>1Mbar Demonstratedthestableformation, mergingandmagneticcompressionof theFRC FRClifetimebetterthanpreviousscaling DemonstratedsuccessfulFRCliner compressionwithaxenonplasmaliner Hopetopublishinthenearfuture! 41 Experimentaldemonstrationoffusiongain withinductivelydrivenmetalliners
Magneto-‐Inertial Fusion Best of Both Worlds Solid stars signify fusion gain conditions w Ti = Te = 10 keV 1012 109 Plasma Energy (J) Stored Energy (J) 106 10 10320 1022 1024 1026 1028 1030 1032 Plasma Density (m-‐3) ITER MFE Issues: Enormous magnetic energy requires Cryogenic Magnets Low power densities leads to large scale, capital and development costs Devastating transient instabilities defy solution NIF ICF Issues: Enormous storage energy (~400 MJ) due to very low driver efficiency Even with stand-‐off , reactor wall and is bombarded by primary fusion products Intricate and minute target with sub-‐nsec timing make for challenging technologies 42
1DLinerCode:Maxwell®Data -6 x10 3 Dataforactualcoiland 2 1 0 collectorplateused InFoilLinerCompression (FLC)Testbed TotalInductanceofcoilwith lineratvariouslocations.Liner inductancewasdetermined theoretically CoilInductance(H) 0 0.1 0.2 0.3 0.4 0.5 LinerRadius(m) -5 x10 PhysicalParameters 1.5 Bavg Ic AverageMagnetfieldinthegap betweencoilandlinerdivided bythecurrentinthecoilfor variouslinerlocations B(I,R)= 1 0.5 MagneticFieldasfuncitonofRandI 0 0 0.1 0.2 0.3 0.4 0.5 LinerRadius(m) -7 x10 Solid-‐liquid transition 6 4 2 Accuratedefinitionofresistivityof AluminumbasedonNISTdata. Dataonlywentto2000K.Data waslinearextrapolatedoutto Resistivity(Ohms/m) vaporizationtemperature 0 0 500 100015002000 Temperature(K) 2500 3000 r=0.41m w=6cm l=0.2mm 43
1DLinerCode ConservationofEnergy R=Rc+Rm+RKE+RT equivalent resistancevalue needtoremove energyequalto ohmicdissipation (heating)oftheliner Resistanceofthecoil Resistanceofthecircuit equivalentresistance valuetoremovethe energyfromthecircuit equaltothekinetic energygainedbythe liner 5 x10 3.5 EKE ETherm Ecap Ecoil Eresist Ecirc Etotal Einnerfield Ecap 3 2.5 2 1.5 1 0.5 0 Energyrecovery Allthermallosses drivecurrent innerfieldcurrent Pressurebalanceofinner andouterfields Energy(J) -0.5 0 1 Time(s) 2 -4 x10 44
ResearchPlan TechnologyRoadmapfortheFusionDrivenRocket 2015 2020 2025 2030 180W/kg 300W/kg 600W/kg 1000W/kg SolarPower EnergyStorage 1kJ/kg 2kJ/kg Gainof200 Spaceflight Charging RepRate>0.01Hz LiLiner Gain<1 RL=0.4m EL=0.5kJ ML=0.18kg D-DOperation SinglePulse $10M/year Shielding Thermal FRCFormation Magnetics Propellant Chamber/Nozzle FDRENGINE (CompleteSystem) Gainof40 RL=1m EL=3.5MJ RepRate>0.1Hz ThrusterwithNozzle Milestones ConceptValidationExperiments SubscaleGroundDemonstration Full-ScaleGroundPrototype In-SpaceDemonstrationMission MannedMarsMission MannedMarsSpaceflightProgram AlLiner PhaseII Gain>5 RL=0.4m EL=2MJ ML=0.38kg D-TOperation RepRate>0.01Hz $50M/year PhaseI Technology Demonstration Mission GameChanging TechnologyDevelopment TRL NIAC NASAMarsFlightProgram
AnalyticalModel(FusionSide) From action Integral constraint where RL= 1.2 m, w = 0.15m Energy loss in ionization of liner (~75 MJ/kg) Eout=fusionenergy+Ein EL=linerkineticenergy Ein=EL+EFRCEL ML=massofliner vL=velocityofLiner C=EL/Ecap=0.5 T=thrustefficiency=0.9 Ek=kinetic(Jet)energy Min.MLrequiredto trapfusionproducts: 0.28kg DropoffinIspatlow gainsisdueto ionizationlosses Forknown LinerMass a SpecificImpulse isdetermined Isp=specificimpulse Isplinksfusionconditionswithmissionequations 46
AnalyticalModel (Missionside) RocketEquations MR MassRatio 7Equations 7Unknowns V Ispg0 Mi Mf MfFinalmass MiInitialmass MPPropellantmass MsStructuralmass fFrequency e MR MR capSpecificmassofcapacitors Mf MPLMS MPLMSMP Specificmassofsolarpanels Solarpanelpower SEP PSEP Mi Ispfromfusionconditions MP MLfT Ein cap Ein PSEP SEP PSEP f Ms 0.1MPL DeltaVrequirementasafunctionof triptime:SolutiontoLambert Problem ItisassumedthatinitiallyFDRemployssolarpanelsforhousekeepingpower Eventuallyitwouldbederiveddirectlyfromnozzlefluxcompression