630 likes | 933 Views
Modern Solid State NMR Strategies for the Structural Characterization of Disordered Materials. Hellmut Eckert Instituto da Física S ã o Carlos Universidade de S ã o Paulo. Disordered States of Matter. Non-Stoichiometric Compounds Plastic Crystals Glasses, Gels, Ceramics Nanocomposites.
E N D
Modern Solid State NMR Strategies for the Structural Characterization of Disordered Materials Hellmut Eckert Instituto da Física São Carlos Universidade de São Paulo
Disordered States of Matter Non-Stoichiometric Compounds Plastic Crystals Glasses, Gels, Ceramics Nanocomposites Composition Preparation, Processing Structure Dynamics Properties
O estado vítreo: aspectos termodinâmicos gás líquido transiçãovítrea vidro cristal Entalpia, volume Temperatura
Network formers: SiO2,B2O3,P2O5,Al2O3 Network modifiers: alkaline, alkaline-earth or silver oxides Ion ConductingGlasses
network modifier network former B O M directly bonded neighbors 200-300 pm Coordination numbers and symmetries Site quantification Short Range Order
B, Si, P O Li-Cs Spatial distribution of modifiers 300-600 pm Network former-network modifier correlation Network former connectivity Medium-range Order in Glasses
Nano- and Microstructure • Chemical Segregation, • Phase Separation, • Nucleation/growth > 1nm
Solid State NMR B0 E Element selective Locally selective hn Inherently quantitative H = HZ + HD + HCS + HQ experimentelly flexible selective - averaging Distances Bonding geometry
H = HZ + HD + HCS + HQ Magic AngleSpinning - MAS zr B0 Haniso= A . {3 cos2 q – 1} rot θ iso 2nd. Interações Dipolares Anisotropia de Desvio Químico - CSA Interações Quadrupolares de Primeira Ordem
Current Research Agenda H. Eckert eckert@ifsc.usp.br NMR Methods Glass Li Ion Battery Optical Catalysts Development Science Components Materials Biomaterials SSNMR, ESR Structure Electrode Luminescent FLP, Zeolite Dipolar Dynamics, Electrolytes, Ceramics, Nanocomposites Techniques Sol-Gel Ceramics Hybrids Bioceramics • Support • Industry: Corning, Schott, Ivoclar, Nippon Glass • DFG, DFG-SFB, IRTG, BMBF • CNPq Universal, FAPESP, CEPID, CNPq- 1B
Mixed Network Former Effect In Ion-Conducting Glasses In a glass system with fixed network modifier content: How do the physical properties change when we vary the network former composition ? Often these changes are non-linear, requiring fundamental understanding on a structural basis
Mixed network former effect in the (M2O)0.33[(P2O5)1-x(B2O3)x ]0.67 – System (M = Li, K, Cs): Glass Transition Temperatures
Mixed network former effect in the (M2O)0.33[(P2O5)1-x(B2O3)x ]0.67 – System (M = Li, K, Cs) DC- conductivity (300 K) Activation Energies
Dynamic characterization by static 7Li NMR Single Network former Mixed network former M. Storek, R. Böhmer, S. W. Martin, D. Larink, H. Eckert, J. Chem. Phys. 2012
Structural Issues Regarding the Mixed-Network Former Effect • Network former speciations • Coordination polyhedra • Types of anionic and neutral species present • Connectivity distributions • Random Linkages ? • Connectivity Preferences ? • Clustering/Phase separation ? • Competition for the network modifier • Proportional sharing vs. preferential attraction • Relation to physical properties
SOLID STATE NMR CHARACTERIZATION B(3) B(4) P(1) P(2) P(3) 11B 31P D. Larink, H. Eckert, M. Reichert, S.W. Martin, J. Phys. Chem. 126, 26162-26176 (2012)
Structural speciation in the (K2O)0.33[(P2O5)1-x(B2O3)x ]0.67 – system 0 < x < 0.5: P(2) units successively replaced by B(4) units 0.5 < x 1.0: P(3) units successively replaced by B(3) units
Tg-value and network connectedness 0 < x < 0.5: P(2) units successively replaced by B(4) units 0.5 < x 1.0: P(3) units successively replaced by B(3) units Glass transition temperature number of bridging oxygen per network former unit
11B- MAS –NMR Spectra of Borophosphate Glasses 50% Ag2O * x P2O5 * (50%-x) B2O3 BO4 BO3 Connectivity with phosphorus ??
Modulation of HD under Sample Rotation + I - Tr S + + Tr I-channel p pulse Magic- Angle Spinning (MAS) 31P Rotational Echo Double Resonance (REDOR) 11B
p p/2 2 0 1 3 4 DS = S0 p/2 p [ Tr ] REDOR Pulse Sequence 11B 31P - S S0 S0 11B 31P
Site Connectivities in Borophosphate Glasses: 11B {31P}-REDOR on 50% Ag2O - 25% B2O3 - 25% P2O5 difference spin echo with dephasing BO4 BO3 spin echo
REDOR Pulse Sequence p p/2 2 0 1 3 4 DS S0 p/2 p [ Tr ] 11B 31P depends on: 11B strength of interaction (# neighbors, distance) 31P dipolar evolution time N . Tr
meas 2 M = 15.8 ± 0.2 kHz 2 theo 2 M = 18.48 kHz 1.0 2 0.8 0 -S)/S 0.6 0 (S 0.4 0.2 Measurement Simulation 0.0 0.0000 0.0005 0.0010 0.0015 0.0020 NT (s) r 11B{31P} REDOR of Crystalline BPO4 .
Network connectivity: 11B{31P} REDOR DS/So = 4/3p M2 (N.Tr)2 M2 ~ Srij-6 M2 = 4-5 . 106 rad2/s2 per B-O-P linkage No B(3)-O-P connectivity
Network connectivity via O-1s XPS: P-O-P NBO B-O-B P-O-B Constant linewidth Peak position changing monotonically Areas consistent with composition Model compound validation B-O-B P-O-B NBO P-O-P Binding energy [eV]
Quantification of network connectivity: Chemical ordering scenario maximized B(4)-O-P Connectivity no B(3)-O-P Connectivity no B(4)-O- B(4) Connectivity; no P(2)2B units
Structure-property correlations in the (M2O)0.33[(P2O5)1-x(B2O3)x ]0.67 – system Speciation electrical conductivities Charge delocalization near P31B and B40P units creates shallow Coulomb traps, favoring ionic mobility
Summary Solid State NMR as a tool in complex phosphate glasses • Quantification of Mixed Network Former Effects • Site Quantifications • Connectivity distributions • Network modifier sharing • Structure/Property correlations: Tg, s • Tendency for heteratomic linkages decreases: • Borophosphate -> Germanophosphate • ->Tellurophosphate -> Thioborophosphate • Other systems studied: • Alumoborate, Alumophosphate, • Alumophosphosilicat
Optical Glasses and Ceramics Waveguides, NLO-materials, Matrices for RE dopants for potential laser applications • Aluminophosphate or -borate matrices • Rare-Earth (RE) ion emitters embedded in a glassy or ceramic environment • Luminescence intensity (excited state lifetime, quantum yield) critically controlled by RE local environment and spatial distribution Fundamental Problem:NMR of fluorescent rare earthions isimpossible due totheir strong f-electronparamagnetism
Structural Magnetic Resonance Approaches • NMR analysis of diamagnetic • mimics to RE species. • 45Sc, 89Y-NMR • NMR analysis of diamagnetic • mimics to RE species. • ´45Sc, 89Y-NMR 2. NMR analysis of paramagnetic effects on host constituent nuclei: HZ and T1 2. NMR analysis of paramagnetic effects on host constituent nuclei: HZ and T1 3. EPR analysis of electron-nuclear dipolar couplings (studied by ESEEM) = RE3+ = Sc3+, Y3+
1. The Diamagnetic Mimic Approach NMR properties of the isotopes nuclide 45Sc 89Y 139La 171Yb 175Lu Spin 7/2 1/2 7/2 1/2 7/2 % abundance 100 100 99.9 14.3 97.4 Q/1028m2 0.22 0 0.2 0 2.8 n/MHz (11.7T) 121 24.5 71.2 88.0 57.2
89Y MAS NMR of yttrium aluminoborate glasses and crystalline model compounds 20(Al2O3)-20Y2O3-60B2O3
11B MAS NMR of 40-y(Al2O3)-yY2O3-60B2O3 (10 y 25) BO33- (orthoborates) BO3- (metaborates) BO32- (pyroborates) Prior to crystallization BO4 H. Deters, A. S. S. de Camargo, H. Eckert, et al. J. Phys. Chem. C 113, 16216 (2009)
11B MAS NMR of vitroceramics in the 40-y(Al2O3)-yY2O3-60B2O3 system (10 y 25) No evidence of meta- or pyroborate groups in the vitroceramics
Change in B-O-Al connectivity upon crystallization detected by 11B{27Al} REDOR 20Y2O3 - 20Al2O3 - 60B2O3 g-B2O3 43% of the B(3) units are not linked to aluminum in the vitroceramic
Glass - to - vitroceramic transition for the system 40-y (Al2O3) - y Y2O3 – 60 B2O3 (B2O3)0.6(Al2O3)0.4-y)(Y2O3)y{(0.8/3) - (2y/3)} YAl3(BO3)4 + {(8y/3)-0.8/3} YBO3 + 0.2B2O3
2nd Approach: NMR Analysis of paramagnetic effects uponthe constituent matrix nuclei: HZ and T1 Rapid electron Zeeman state fluctuations (short T1e): d = dFermi + ddip + ddia (1) dFermi ~ {µB2/kBT}gisoBor ~ cMr (2)ddip ~ {µB2/kBT}r-3{gzz2- ½(gxx2 + gyy2)}(3cos2q-1) • Isotropic shift contribution • Isotropic shift contribution + broadening effects
Al2O3)0.2(Y2O3)0.2(B2O3)0.6 : Nd3+, Er3+,and Yb3+ subst. Yb3+ Nd3+ Er3+ BO3 BO4
Distribution of the RE ions in theceramics: 27Al MAS-NMR results 10Y-30Al-60B 20Y-20Al-60B YAl3(BO3)4 YAl3(BO3)4 in phase mixture Linewidths and areas of new Al site are proportional to Yb/Y ratio H. Deters, A. S. S. De Camargo, C. N. Santos, H. Eckert, J Phys. Chem. C 114,14618 (2010)
Linewidth (11B) Linewidth (27Al) Peak area (27Al) Linewidth (89Y) Apparent Yb/Y ratio in the YAB component of VC-Y20 lower than predicted preferential location of Yb in YBO3 component Preferential location of Nd in YAl3(BO3)4 component
3. ESEEM - Electron Spin Echo Envelope Modulation typical excitation window • applied at a particular fixed field strength • systematic variation of the pulse spacing (t+Dt) • Modulation effect results from the simultaneous excitation of allowed (Dms=±1, DmI=0) and partially forbidden (Dms=±1, DmI≠0 nuclear spin-flip) EPR transitions. wa = [(wI + A/2)2 + B2/4]1/2 wß = [(wI - A/2)2 + B2/4]1/2
ESEEM Spectra of Yb-doped Glasses in the System xY2O3-(40-x)Al2O3-60B2O3
Summary Solid State NMR as a promising tool in optical glasses • Strategy for structural studies of rare earth ions in optical glasses • Influence of rare earth ions upon the framework structure • First 45Sc and 89Y NMR in glasses • First ESEEM of alumoborate glasses • Study of crystallization mechanism and dopant distributions in Y-alumoborate vitroceramics • Substitution preference for Yb3+ ions
Thank you • Dr. Heinz Deters • Frederik Behrends • Drs. J. F. de Lima, C. J. Magon (IFSC, USP) • Dr. A.S.S. de Camargo (IFSC, USP) • SFB 458 • NRW Graduate School of Chemistry • Fond der Chemischen Industrie
AK Eckert, WWU Münster Prof. H. Eckert Prof. H.J. Deiseroth (University of Siegen) S.T. Kong (University of Siegen) SFB 458 Thanks for your attention!
31P MAS NMR of Li7PS5-xSexCl PS4 PS2Se2 PSSe3 PSe4 PS3Se Increasing S content Increasing Se content Resolution of first and second coordination sphere P-S bonding favored over P-Se bonding