170 likes | 343 Views
Dynamic Energy Budget theory. 1 Basic Concepts 2 Standard DEB model 3 Metabolism 4 Univariate DEB models 5 Multivariate DEB models 6 Effects of compounds 7 Extensions of DEB models 8 Co-variation of par values 9 Living together 10 Evolution 11 Evaluation. Taxa 10a.
E N D
Dynamic Energy Budget theory 1 Basic Concepts 2 Standard DEB model 3 Metabolism 4 Univariate DEB models 5 Multivariate DEB models 6 Effects of compounds 7 Extensions of DEB models 8 Co-variation of par values 9 Living together 10 Evolution 11 Evaluation
Taxa 10a Superkingdom Kingdom Subkingdom Division Subdivision Phylum Subphylum Superclass Class Subclass Infraclass Superorder Order Suborder Infraorder Tribe Subtribe Cladus Taxon Cohort Subcohort Series Section Group Superfamily Family Subfamily Carolus Linneus (1758) Systema Naturae, 10th edition Genus Subgenus Species Subspecies Race Link between classification & evolution Evolution is only partly understood Many species still wait for description
Early ATP generation 10.1 • FeS + S0 FeS2 • ADP + Pi ATP • ATPase • hydrogenase • S-reductase FeS2 FeS 2H+ H2 S0 H2S ADP ATP 2e- Pi S0 H2S 2H2O 2H+ 2OH- Madigan et al 1997
Ester vs Ether lipids 10.2 Eubacteria Archaea
Nucleated prokaryotes 10.2a Planktomycetes Poribacteria
n Cellulose vs Chitine 10.2b • Opisthokonts produce chitine, not cellulose Except 2 taxa via lateral gene transfer from -proteobacteria Urochordates (Matthysse et al (2004) PNAS27:986-981) Aspergillus fumigatus (Nobles et al Cellulose 11:437-448) Deuterostomes don’t produce chitine but CaCO3 and keratine in tetrapoda • Amoebas (Dictyostelium) & bikonts got cellulose synthetase from cyanobacteria • Some chlorophytes produce chitinase • Many fungi produce cellulase, no animals can (symbiosis) Cellulose (C12H20O10)n Chitine (C16H26O10N2)n Ciona Aspergillus fumigatus
Planktomycetes 10.2d • eubacteria with nuclear membranes • like eukaryotes • some species can oxidize ammonia anaerobically • they have ether lipids, like archaea • some species have genes for formaldehyde detoxification • that archaea use for methanogenesis & • archaea & eubacteria for methanotrophy • are abundant in stromatolites • fossil stromatolites date from 3.5 Ga ago • propagate by budding • probably passed its 16 genes for C1-detoxification • to archea for methane production/consumption Planctomyces
Evolution of central metabolism 10.2.1 in prokaryotes (= bacteria) 3.8 Ga 2.7 Ga i = inverse ACS = acetyl-CoA Synthase pathway PP = Pentose Phosphate cycle TCA = TriCarboxylic Acid cycle RC = Respiratory Chain Gly = Glycolysis Kooijman, Hengeveld 2005
Prokaryotic metabolic evolution 10.2.1a • Heterotrophy: • pentose phosph cycle • glycolysis • respiration chain • Phototrophy: • el. transport chain • PS I & PS II • Calvin cycle • Chemolithotrophy • acetyl-CoA pathway • inverse TCA cycle • inverse glycolysis
Sizes of blobs do not reflect number of species Survey of organisms 10.2.3 forams Retaria fungi Opisthokonts Cercozoa Chromista animals loss phagoc. gap junctions tissues (nervous) Alveo- lates bicentriolar mainly chitin EF1 insertion Excavates Bikont DHFR-TS gene fusion Amoebozoa Plantae mainly celllose membr. dyn unikont cortical alveoli chloroplasts triple roots Bacteria
(brown algae) Phaeophyceae Granuloreticulata Xenophyophora Basidiomycota Xanthophyceae Raphidophyceae Ascomycota Chrysophyceae Synurophyceae Actinopoda Zygomycota Eustigmatophyceae Microsporidia Labyrinthulomycota Dictyochophyceae Bicosoecia Pedinellophyceae Chytridiomycota Pelagophyceae Plasmodiophoromycota Pseudofungi Bacillariophyceae (diatoms) Chlorarachnida Opalinata Cercomonada Choanozoa Bolidophyceae animals Prymnesiophyceae Metamonada Cryptophyceae Apusozoa Parabasalia mitochondria Sporozoa (plants) Cormophyta Percolozoa primary Myxomycota Dinozoa Euglenozoa chloroplast Protostelida Ciliophora secondary (green algae) Chlorophyceae Kinetoplastida chloroplast Archaeprotista Diplonemida tertiary (red algae) Rhodophyceae chloroplast Rhizopoda Loukozoa photo symbionts Glaucophyceae Bacteria Survey of organisms 10.2.3a
Survey of “algae 10.2.3b (brown algae) Phaeophyceae Granuloreticulata Xenophyophora Basidiomycota Xanthophyceae Raphidophyceae Ascomycota Chrysophyceae Synurophyceae Actinopoda Zygomycota Eustigmatophyceae Microsporidia Labyrinthulomycota Dictyochophyceae Bicosoecia Pedinellophyceae Chytridiomycota Pelagophyceae Plasmodiophoromycota Pseudofungi Bacillariophyceae (diatoms) Chlorarachnida Opalinata Cercomonada Choanozoa Bolidophyceae animals Prymnesiophyceae Metamonada Cryptophyceae Apusozoa Algae: “little green things” but many many exceptions Parabasalia Sporozoa (plants) Cormophyta Percolozoa Myxomycota Dinozoa Euglenozoa Protostelida Ciliophora (green algae) Chlorophyceae Kinetoplastida Archaeprotista Diplonemida (red algae) Rhodophyceae Rhizopoda Loukozoa Bacteria Glaucophyceae The biggest organism is a “micro-organism”
(Endo)symbiosis 10.2.3c Paramecium bursaria ciliate with green algae Cladonia diversa ascomycete with green algae Ophrydium versatile ciliate with green algae Peltigera ascomycete with green algae