480 likes | 586 Views
Artificial Neural Networks. for. Botnet detection. Joseph Ghafari. Stéphane Sénécal, Emmanuel Herbert. Figures. Botnets. Neurons. Results. Conclusion. Figures. Botnets. Neurons. Results. Conclusion. Facts & Figures about Botnets. Figures. 88% of all spam. Botnets. Neurons.
E N D
Artificial Neural Networks for Botnet detection Joseph Ghafari Stéphane Sénécal, Emmanuel Herbert
Figures Botnets Neurons Results Conclusion
Figures Botnets Neurons Results Conclusion
Facts & Figures about Botnets Figures 88% of all spam Botnets Neurons Results Conclusion 77 spam / min / bot! (200B spam / day)
Facts & Figures about Botnets Figures 150,000 bots / day Botnets Neurons Results Conclusion Bredolab: 30M bots
Financial impact Figures 6 banksrobbed Botnets Neurons 200 accountshacked Results Conclusion $ 4,7M stolen
Financial impact Figures 140 M clicks / day Botnets Neurons Results Conclusion $ 900 K / day
Figures Botnets Neurons Results Conclusion
Bot - Infection Figures Botnets Neurons Results Conclusion
Bot – Propagation Figures Botnets Neurons Results Conclusion
Bot – Propagation Figures Botnets Neurons Results Conclusion 24h 340,000 infections
Botnets - Etymologie Figures Botnets C&C Neurons Results Conclusion
Botnets – Clients Figures Botnets C&C Neurons Results Conclusion
Botnets – DDoSAttacks Figures Botnets ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Neurons Results Conclusion
Botnets – DDoSAttacks Figures Botnets Neurons Results Conclusion
Notions - Internet Figures Botnets 47.12.101.3 12.1.40.8 Neurons Results Conclusion 116.4.92.50 31.28.150.102
Notions - Internet Figures Botnets bbc.co.uk www.emn.fr Neurons Results Conclusion www.google.com www.orange.fr
DNS – How itworks Figures Botnets www.emn.fr Où se trouve www.emn.fr ? 12.1.40.8 12.1.40.8 Neurons Results Conclusion
Botnets & DNS Figures Botnets www.todaysfutbol.com 40.101.12.3 40.101.12.3 C&C Neurons Où se trouve www.todaysfutbol.com ? Results Conclusion DNS
DNS Data Figures Botnets R DNS Q Neurons Results Conclusion
Problem Figures Botnets Botnet ? Neurons Results Conclusion
Aim Figures Botnets Légitime Botnet Neurons Results Conclusion
Figures Botnets Neurons Results Conclusion
A neuron Figures Botnets Neurons Results Conclusion
The artificialneuron Figures Botnets Neurons Results Conclusion
Neural network Figures Botnets Neurons Results Conclusion
Artificial neural network Figures Botnets Neurons Results Conclusion
Artificial neural network Figures Botnets Neurons Normal Botnet Results Conclusion
Multi-Layer Perceptron (MLP) Figures Botnets Neurons Results Conclusion
Multi-Layer Perceptron (MLP) Figures Botnets Neurons Results Conclusion
MLP – Step 1 Figures Propagation Botnets Neurons Results Conclusion
MLP – Step 2 Figures Computing the error Botnets Neurons Results Conclusion
MLP – Step 3 Figures Error Back-propagation Botnets Neurons Results Conclusion
Extreme Learning Machine (ELM) Figures Botnets Neurons Results Conclusion
Extreme Learning Machine (ELM) Figures Botnets Neurons Results Conclusion
ELM – Step 1 Figures Randomgeneration of and Botnets Neurons Results Conclusion
ELM – Phase 2 Figures Propagation Botnets Neurons Results Conclusion
ELM – Phase 3 Matrix inversion to determine Figures Botnets Neurons Results Conclusion
MLP – ELM Figures ELM MLP Botnets Neurons Learning speed Simple Hyper parameters Deep Learning speed Shalow Results Hyper parameters Understanding Conclusion
Figures Botnets Neurons Results Conclusion
Procedure Figures Botnets Neurons Results About 10,000 input cases 1 – 1000 neurons 512 featurecombinationstested 2/3 learning set 1/3 validation set Conclusion
Results – Optimal feature set Figures Botnets Neurons Results Hour of the query TTL (Time To Live) Errorsduringqueryprocess Conclusion
Results – Confusion Matrix Figures Botnets Neurons Results Expected Legitimate Botnet Predicted Legitimate 1719 155 1874 25 1660 1685 Botnet 1744 1815 3559 Conclusion
Results – Measures Figures Botnets Neurons Results Accuracy = 94,94 % (Error rate = 5,06 %) False Negatives = 1,4 % (0,7 % total) Precision = 0,92 Recall = 0,99 False Positives = 8,5 % (4,36 % total) Averagelearning speed Equivalent learning speed for MLP Conclusion
Figures Botnets Neurons Results Conclusion
Conclusion Figures Botnets Fast learning Neurons Results Conclusion Online/Batch possible Good performances Not enough data Highlyheterogeneous data
Whatnow … Figures Botnets Gather more data Neurons Results Conclusion Use the lists instead of statistical values for distributions Take advantage of non numeric data (IP address, Query ID, …)
Figures Botnets Neurons Results Conclusion