330 likes | 443 Views
Nuclear structure and dynamics at the limits. Reiner Krücken for the NuSTAR collaboration Physik Department E12 Technische Universität München & Maier-Leibnitz-Laboratory for Nuclear and Particle Physics. RISING to the Challenges. Bill Gelletly for the Surrey nuclear physics group
E N D
Nuclear structure and dynamics at the limits Reiner Krücken for the NuSTAR collaboration Physik Department E12 Technische Universität München & Maier-Leibnitz-Laboratory for Nuclear and Particle Physics
RISING to the Challenges Bill Gelletly for the Surrey nuclear physics group Centre for Nuclear and Radiation Physics Physics Department University of Surrey UWS -08/05/2008
Nuclear structure and dynamics at the limits Introduction The NuSTAR facility at the Super-FRS Modification of shell structure Soft modes, nuclear EOS and neutron skins Conclusions
Long Standing Questions of Nuclear Structure Physics • What are the limits for existence of nuclei? • Where are the proton and neutron drip lines situated? • Where does the nuclear chart end? • How does the nuclear force depend on varying proton-to-neutron ratios? • What is the isospin dependence of the spin-orbit force? • How does shell structure change far away from stability? • How to explain collective phenomena from individual motion? • What are the phases, relevant degrees of freedom, and symmetries of the nuclear many-body system? • How are complex nuclei built from their basic constituents? • What is the effective nucleon-nucleon interaction? • How does QCD constrain its parameters? • Which are the nuclei relevant for astrophysical processes and what are their properties? • What is the origin of the heavy elements?
Towards a predictive (and unified) description of nuclei • Mean Field Models • DFT • RMF Shell Model w/ configuration interaction • Ab initio • GFMC • NCSM • CC • Effective interactions • Vlow-k, VUCOM, G-matrix (+3N) • Realistic interactions • AV18, CD Bonn + 3N • cEFT
Superheavy elements Neutron skins 2n New shell gaps through residual interaction Shell quenching by diffuse surface 9Li 11Li harmonic oscillator + spin-orbit +centrifugal diffuse surface neutron rich + spin-orbit New shell gaps through residual interaction Soft collective modes Halos Nuclear Structure at the extremes
Primary Beams • 1012/s; 1.5-2 GeV/u; 238U28+ • Factor 100-1000 over present in intensity Secondary Beams Storage and Cooler Rings • Broad range of radioactive beams • up to 1.5 - 2 GeV/u; • up to factor 10 000 in intensity over present • Antiprotons • Radioactive beams • e- - A and Antiproton-A collider FAIR: Facility for Antiproton and Ion Research Future Facility SIS 100/300 GSI today SIS 18 UNILAC ESR 100 m HESR Super FRS RESR CR NESR
Primary Beams Superferric Multiplet • 1012/s; 1.5-2 GeV/u; 238U28+ • Factor 100-1000 3 x 9.75° SC Dipole Unit Secondary Beams • up to factor 10 000 SUPERconducting FRagment Separator
Decay spectroscopy (DESPEC) Laser spectroscopy (LASPEC) Precision mass measurements (MATS) Gas stopping cell In-flight spectroscopy (HISPEC) Energy buncher / spectrometer Experiments with slowed and stopped beams
High Energy BranchReactions with Relativistic Radioactive Beams (R3B) Reactions in complete kinematics
Modification of shell structure Reduction of Spin-orbit splitting ? Role of the tensor interaction ?
Shell modification through softer potential ? T.R. Werner, J. Dobaczewski, W. Nazarewicz, Z. Phys. A358 (1997) 169 Possible signatures: reduction of spin-orbit splitting in neutron-rich nuclei new shell gaps (e.g. N=70 in 110Zr) increased neutron skin
How to find a shell gap: Sn values Neutron separation energies Pairing Pb Isotopes Shell closure Neutron dripline Neutron number N
Q-values from b-decay (DESPEC) Shortest half-lives, production rates << 1 min-1
1.5 d 1.0 <r 2 > Isotope shifts (fm 0.5 2 ) 0.0 Laser spectroscopy and precision masses (MATS &LASPEC) highest precision masses 25 Spins, Moments isotope shifts Rb 20 (MeV) 2-neutron separation energy 15 2n S 10 40 45 50 55 60 65 D. Lunney et al. Rev. Mod. Phys. 75 (2003) 1021 N ( Z = 37)
time Schottky Mass Spectrometry 4 particles with different m/q Y. Litvinov
Sin(w1) Sin(w2) w4 w3 w2 w1 Sin(w3) time Sin(w4) Schottky Mass Spectrometry Fast Fourier Transform Y. Litvinov
ILIMA mass measurements mass surveys
b-decay Q-value: 130Cd less bound Quenching of N=82 shell I. Dillmann, PRL91 (2003) 162503 N=82 Probing shell closures: Decay Spectroscopy (DESPEC) • no shell quenching • information on excited states needed !! A. Jungclaus et al., PRL 99, 132501 (2007)
j’> j’< j> neutrons j< protons T. Otsuka et al., PRL 95 (2005) 232502 11/2- 7/2+ Reduced spin-orbit or tensor force? 1h11/2 protons 1g7/2 protons Z=51 Sb isotopes RIB beams J.P. Schiffer et al., PRL 92 (2004) T. Otsuka et al., PRL 97 (2006) 162501 1h11/2 neutrons
DL=3 DL=1 f 5/2 p 1/2 p 3/2 DL=1 x GXPF1A x PRELIMINARY 56Ti Single-particle structure from direct reactions g (HISPEC, R3B) • Knock-out reaction • Peripheral collision • Possible with few particles/s P|| Momentum distribution: - L of knocked-out particle A. Gade • Cross sections: • exclusive for excited states via gamma-decay ( AGATA) • spectroscopic factors P. Maierbeck et al.,GSI-FRS + MINIBALL
probe bulk properties of nuclei in-medium modification of NN interaction symmetry energy compressibility New soft modes Giant resonances Radioactive beams allow study of isospin dependence
Dipole Excitations of Neutron-Rich Nuclei- Symmetry Energy, Neutron Skin, and Neutron Stars - P. Ring et al. Photoabsorption LAND collaboration A. Klimkiewicz, PRL subm. P. Adrich, PRL 95 (2005) 124Sn Coulomb excitation 130Sn 132Sn neutron skin core vibration
Rn-Rp δr Dipole Excitations of Neutron-Rich Nuclei- Symmetry Energy, Neutron Skin, and Neutron Stars - Neutron-skin thickness excitation of the neutron skin Properties of Neutron Stars
Neutron skins Alternative access to asymmetry parameter M. Bender, et al. RMP 75 (2003) • established methods for charge radii • neutron radii difficult to measure
Electron Ion Collider (ELISe) to FLAIR from RESR • charge densities from (e,e) scattering • collective modes via (e,e’) scattering • single-particle structure from (e,e’N) reactions
The EXL experiment RIB‘s from the Super-FRS Electron cooler Inelastic a scattering Isoscalar Giant Monopole resonance isospin dependence of incompressibility Elastic proton scattering Matter distribution
p A A-1 Neutron skins from Antiprotons Antiproton Ion Collider (AIC) EXOpbar • annihilation cross-section at high energies proportional to mean square radius • count surviving A-1 nuclei • Proton and neutron radii in the same experiment M. Wada, Y.Yamazaki • antprotons on atomic orbits • annihilation on tail of density distribution • Halo or Skin ? H. Lenske, P. Kienle PLB647 (2007) 82 P. Kienle, NIM B 214 (2004) 193
205Pb Neutron skins Deeply bound pionic states Pion-Nucleus Optical potential related to neutron skin In medium modification of pion decay constant In medium modification of quark condensate Kolomeitsev et al. PRL90 (2003) 092501
The aims of NUSTAR @ FAIR • Nuclear Structure Physics: • Isospin dependence of effective nuclear interaction • Modification of shell structure far off stability • New effects near the driplines (halos, skins, soft modes, …) • Relevant symmetries, structural evolution, role of phase transitions • Nuclear Astrophysics Studies: • Understand the origin of the heavy elements • K.H. Langanke • Nuclear Reaction studies • Investigate reaction dynamics for RIB production, spallation, ADS • Dynamics in systems with weakly bound nucleons (halos, correlations, continuum) Towards a unified description of nuclear structure and dynamics