1 / 15

LHC Injector Synchrotrons 2012

LHC Injector Synchrotrons 2012. LHC Injectors: SPS Q20 operational. Operational since September 2012 Remove or ease intensity limitations in the SPS No hardware change Very smooth transition, allowing brighter beams at LHC injection

ulfah
Download Presentation

LHC Injector Synchrotrons 2012

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LHC Injector Synchrotrons 2012

  2. LHC Injectors: SPS Q20 operational • Operational since September 2012 • Remove or ease intensity limitations in the SPS • No hardware change • Very smooth transition, allowing brighter beams at LHC injection • All LHC beams (proton and ions) delivered with Q20 optics • Still some work to do in the LHC!!! Q20 Q26 LHC H. Bartosik, Y. Papaphilippou ABP Group Meeting - LIS - G. Arduini

  3. LHC injectors: BCMS becomes reality… a) Double batch injection from PSB (4 + 4 bunches, 8 bunches for PS at h=9) b) Up to 5 batches of 48 bunches each transferred to the SPS (240 bunches) S. Gilardoni + RF team h = 9 10  1112  13  14  7  21 BCMS “Batch Compression, Merging and Splitting in PS” h = 21  42  84 4 bunches +4 bunches @SPS extraction h = 9 h = 21 ABP Group Meeting - LIS - G. Arduini

  4. LHC Injectors: Ions • Excellent quality ion beams for the p-Pb run • Started systematic measurements to: • Characterize the qualify the beams coming from Linac3 • Characterize the machine parameters (e.g. chromaticity) • To understand low energy losses and potential performance limitations M. Bodendorfer, C. Carli, collaboration with HSL ABP Group Meeting - LIS - G. Arduini

  5. M. Giovannozzi (LCU), S. Gilardoni, C. Hernalsteens, A. Lachaize MTE-related activities • Validation of the dummy septum scheme • Review of extraction 16 extraction  spin-off: reduction of losses for other operational beams • LHC tools and techniques successfully applied to the injectors’ chain! Entry of SS15 Entry of SS16 Measured PS beta-beating Octupolar Resonance Driving Terms ABP Group Meeting - LIS - G. Arduini

  6. Sca n d i r ecti o n 0 0 6 . 50 6 . 50 =1 =1 q q y y +3 +3 q q ? x ? x 6 . 45 6 . 45 3 3 q q ? 0 . 005 ? 0 . 005 x x + + =1 =1 6 . 40 6 . 40 q q q q y y q q +2 +2 y x y x =1 =1 q q ? ? =1 y =1 y x x q q 6 . 35 ? 0 . 01 6 . 35 ? 0 . 01 3 3 3 q =1 3 q =1 e e y y n n u u q q t t 6 . 30 6 . 30 +3 +3 x x q q l l =1 =1 dN a a y y dN ? 0 . 015 ? 0 . 015 c c 2 2 i i N q N q t t 4 q =1 4 q =1 r 6 . 25 r 6 . 25 y x x y e e + + V V q q =0 =0 =0 =0 y y y y =1 =1 y y q q 6 . 20 ? 0 . 02 6 . 20 ? 0 . 02 q q 3 3 2 2 q q q q + + + + x x x x +2 +2 x x x x =0 =0 q q + + q q 1 1 1 1 2 2 3 3 q y y q 6 . 15 q 6 . 15 q q q ? ? ? ? = = = = y y + y + y =1 =1 =1 =1 ? 0 . 025 ? 0 . 025 x x q q x x x x =0 =0 q q q q ? ? q q 4 3 4 3 y y 6 . 10 6 . 10 +2 +2 q q x x =0 =0 ? ? q q y y +3 +3 q q ? x ? x 6 . 05 6 . 05 ? 0 . 03 ? 0 . 03 6 . 05 6 . 10 6 . 15 6 . 20 6 . 25 6 . 30 6 . 35 6 . 40 6 . 45 6 . 50 6 . 05 6 . 10 6 . 15 6 . 20 6 . 25 6 . 30 6 . 35 6 . 40 6 . 45 6 . 50 H o r i z o n ta l tu n e H o r i z o n ta l tu n e (e) T u n e s c an c on d u c t e d f r om l e f t t o r i gh t w i t h ou t c om p e n s at i on . (f ) B as i s of t h i s p l ot i s a s c an i n t h e s am e d i r e c t i on as i n ( e ) , b u t t h i s t i m e f ou r A. Hus cha uer s k e w s e x t u p ol e s w e r e i n d e p e n d e n t l y p o w e r e d i n or d e r t o r e d u c e t h e r e s on an c e 3 q =1 . y A d d i t i on al l y , a d e c r e as e i n t h e s t r e n gt h of 2 q + q =1 is vis ible . x y 6 . 50 0 6 . 50 0 =1 =1 q q y y +3 +3 q q ? x ? x 6 . 45 6 . 45 3 3 q q ? 0 . 01 ? 0 . 01 x x + + =1 =1 S 6 . 40 6 . 40 q q q q y y q q +2 c +2 y y x x =1 =1 q q ? ? a =1 =1 y y x x q q 6 . 35 6 . 35 ? 0 . 02 ? 0 . 02 n 3 3 3 q =1 3 q =1 e e y y n n u u d q q t t 6 . 30 6 . 30 +3 +3 x x q i q l l dN dN =1 =1 a a y y r ? 0 . 03 ? 0 . 03 c c 2 2 N N i i q q t t e 4 q =1 4 q =1 r 6 . 25 6 . 25 r y x y x e e + + c V V q q =0 =0 =0 =0 t y y y y =1 i =1 y y q q 6 . 20 ? 0 . 04 6 . 20 ? 0 . 04 q q 3 3 2 2 o q q q q + + + + x x x x +2 x +2 x x x =0 =0 q + q + q q n 1 1 1 1 2 2 3 3 q q y q y 6 . 15 6 . 15 q q q ? ? ? ? = = = = y y + + y y =1 =1 =1 =1 ? 0 . 05 ? 0 . 05 x q x q x x x x =0 =0 q q q q ? ? q q 3 4 3 4 y y 6 . 10 6 . 10 +2 +2 q q x x =0 =0 ? ? q q y y +3 +3 q q ? x ? x 6 . 05 6 . 05 ? 0 . 06 ? 0 . 06 6 . 05 6 . 10 6 . 15 6 . 20 6 . 25 6 . 30 6 . 35 6 . 40 6 . 45 6 . 50 6 . 05 6 . 10 6 . 15 6 . 20 6 . 25 6 . 30 6 . 35 6 . 40 6 . 45 6 . 50 H o r i z o n ta l tu n e H o r i z o n ta l tu n e ( g) T u n e s c an c on d u c t e d f r om t op t o b ot t om w i t h ou t c om p e n s at i on ( t h e t w o l i n e s c l os e (h) B as i s of t h i s p l ot i s a s c an i n t h e s am e d i r e c t i on as i n ( g) , agai n w i t h ac t i v e s k e w to 3 q =1 ar e i n t e r p ol at i on ar t i f ac t s ) . s e x t u p ol e s f or c om p e n s at i on . T h e r e s on an c e 3 q =1 s e e m s t o b e c om p l e t e l y s u p p r e s s e d x y an d t h e b e n e ? c i al i n ? u e n c e on 2 q + q =1 i s al s o v i s i b l e . x y PS-LIU studies: Space charge • Pushing the space charge limit.. • Resonance compensation (3QV=19) successfully applied with 4 skew sextupoles. • Open possibility to optimize injection working point towards higher Qv. • In parallel: optics modelling at 1.4 and 2 GeV and space charge simulations (ORBIT-PTC, MICROMAP) No resonance compensation Resonance compensation S. Gilardoni, A. Huschauer, R. Wasef, collaboration with GSI, ICE, LCU ABP Group Meeting - LIS - G. Arduini

  7. PS-LIU studies: PS TFB • The PS TFB could damp the PS H-T instability with an uncoupled machine for all tested working points (tunes and chromaticities). The PS TFB can delay the onset of an instability observed on the 25 ns LHC by 10 ms providing a significant margin during operation. G. Sterbini + BE/RF ABP Group Meeting - LIS - G. Arduini

  8. PS-LIU: Longitudinal stability Comparison with external excitation Comparison with 10 MHz RF system mode measurements Rs [Ω] ω/ω0 simulations Mode amplitude [rad] simulations: rise time ωr = 5ω0 … 9ω0 ≈ 340 ÷ 500 ms L. Ventura, M. Migliorati (ICE) in collaboration with BE-RF ABP Group Meeting - LIS - G. Arduini

  9. PSB-LIU studies: Space Charge • Understanding of the features of the space charge simulation codes (ORBIT-PTC) • Detailed simulations of the injection process in the presence of space charge. HL-LHC type beams • Experiments to benchmark codes E. Benedetto, V. Forte, M. Martini, collaboration with ICE ABP Group Meeting - LIS - G. Arduini

  10. PSB-LIU studies: Optics Model • Detailed optics measurements to build the PSB magnetic model: • To provide realistic simulations of space charge effects • to provide deterministic resonance compensation schemes • Preliminary tests with turn-by-turn orbit acquisition systems • Orbit response analysis providing useful input concerning linear optics errors and misalignments C. Carli, M. McAteer (oPAC), R. Tomàs(LCU), collaboration with SU ABP Group Meeting - LIS - G. Arduini

  11. Extra Low ENergy Antiproton ring ELENA Injection with magnetic septum (≈340 mrad) and kicker (84 mrad) • Aim: Improve capture efficiency of experiments (traps) • Decelerate antiprotons coming from the AD at 5.3 MeV down to 100 keV • Electron Cooler to increase phase space density of beams delivered • In full swing for the Technical Design Report preparation (end of this month) and Review (September) High sensitivity magnetic Pick-up for Schottky diagnostic (for intensity) and LLRF Extraction towardsexisting experiments (with fast electrostatic deflector) Extraction towards new exp. zone Wideband RF cavities (similar to new PSB ones) Scraper for destructive emittance measurements C. Carli (PL), S. Maury (DPL), T. Rijoff, collaboration with ICE (A. Burov) Electron Cooler and compensation solenoids ABP Group Meeting - LIS - G. Arduini

  12. HP-PS design • Study of a High-Power PS with a 2MW proton beam for neutrinos (LAGUNA-LBNO) • Based on superferric magnets for reaching energy of 50 (or 75) GeV • 3-fold symmetric with NMC arcs and doublet straights (adapted from PS2) • Optics design and single particle dynamics almost completed • Collimation studies in progress J. Alabau, A. Alekou, F. Antoniou, Y. Papaphilippou LAGUNA – LBNO EU activity ABP Group Meeting - LIS - G. Arduini

  13. BIO-LEIR KTT funded • Options for low energy front-end (2nd Linac3 source or other solution) under study (HSL) • Study of a slow extraction in LEIR well advanced • Sextupole+Septa and bumper scheme devised • Conceptual Design Report in preparation. C. Carli, A. Garonna, (collaboration with HSL) ABP Group Meeting - LIS - G. Arduini

  14. Challenges ahead • 2012 has still been dominated by the effort for operation but as you see effort on Projects has grown significantly thanks to (new) staff, external collaborators, fellows and students • In 2013 projects will take the main emphasis while preparing for the start-up in 2014-15 • I believe that we (all) can only benefit of the partnership between projects (even more if they have tight links with the group…) and group/sections (=expertise). Let’s profit of that!! ABP Group Meeting - LIS - G. Arduini

  15. Many thanks for the sustained effort and congratulations for all the achievements ABP Group Meeting - LIS - G. Arduini

More Related