400 likes | 518 Views
MATISSE - Rencontre projet Fizeau Nov. 2010. Schedule. Contribution de Caroline Daire pour la gestion Total FTEs pour OCA : 48.8 sur 124.5. From January 2010 to June. From January 2010 to June. cold stop. shutter. slit. reimager. detector. anamorphic optics. photometric
E N D
Contribution de Caroline Daire pour la gestion Total FTEs pour OCA : 48.8 sur 124.5.
From January 2010 to June cold stop shutter slit reimager detector anamorphic optics photometric slider camera wheels reimager Interferometric channels Slide 6 Matisse September 2010 photometric channels
From January 2010 to now reimager shutter detector photometric channels photometric slider anamorphic optics wheels camera Interferometric channels Slide 7 Matisse June 2010
Cold Optics & Cryostats Warm Optics
Young Stellar Objects • From Circumstellar.org catalogue
Young Stellar Objects • N band : 4-7 sources >=18-20Jy, observable with ATs38 sources >=1Jy, observable with UTs • L band : 18 sources >=2Jy, observable with ATs53 sources >=0.1Jy, observable with UTs • By an increase of the sensitivity to the coherent • flux by a factor of 5 : • N band AT : 20 sources instead of 2-4 • N band UT : 70 sources instead of 38 • L band AT : 40 sources instead of 18 • L band UT : 61 sources instead of 53
Young Stellar Objects • N band : 4-7 sources >=18-20Jy, observable with ATs38 sources >=1Jy, observable with UTs • L band : 18 sources >=2Jy, observable with ATs53 sources >=0.1Jy, observable with UTs • By an increase of the sensitivity to the coherent • flux by a factor of 5 : • N band AT : 20 sources instead of 2-4 • N band UT : 70 sources instead of 38 • L band AT : 40 sources instead of 18 • L band UT : 61 sources instead of 53
Several Scenarios studied for different disk structures and dust contents Scenario 1. Flared disk, inner radius of 3 AU. Herbig source. The disk inclination is 45°. Scenario similar to the one used during Phase A for reconstructing an image. • Scenario 2 = scenario 1 with a disk inner radius of 4 AU • Scenario 3 = scenario 1 with a disk inclination of 35° • Scenario 4 = scenario 1 with a maximum grain size three times larger. • Scenario 5 = scenario 1 where the dust grains are made up also with 10% of crystalline olivine + Forsterite material. Images for several wavelengths are computed. • Scenario 6 = scenario 5, the same case as previously where the dust grains are made up also with a percentage of crystalline material but now the olivine composed grains are distributed for R <= 6 AU. • Scenario 7 : a puffed inner region as an alternative to Scenario 1. • Scenario 8 : a case with the presence of water ice grains (to be compared with scenario 1), disk without ice grains).
7 nights, 4 telescopes, N band Case 1: 10 % error on V, 0.1 rad on the closure phases. Case 2: 2-3% error on V, 0.01 rad on the closure phases.
7 nights, 4 telescopes, N band Case 1: 10 % error on V, 0.1 rad on the closure phases. Case 2: 2-3% error on V, 0.01 rad on the closure phases.
… • Improvement of VLTI sensitivity and accuracy. • Sensitivities with MATISSE will be improved by : • - the use of an external Fringe Tracking, On and Off Axis, • - the continuation of the effort made to reduce the fast OPD jitters/ vibrations. • Accuracies with MATISSE will be improved by : • - the use of an external Fringe Tracking, • - the effort made to reduce the fast OPD jitters/ vibrations, • - the pupil lateral motion monitoring, • - the use of OPD jitter residuals, tip-tilt residual, pupil lateral motion information • when analysing the data. • High limiting magnitude : Urgent need to develop and test « exotic » modes : • H-K blind + N fringe-tracking • MR blind recording • New ideas for coherencing • High dynamic range : Urgent need to open the AMBER BCD
Vers une ANR 2011 • Formation et Evolution des Systèmes Planétaires • 2 Axes afin d’apporter de nouveau résultats dans le domaines : • a) R&D codes Astrophysiques (différent types poussière, région puffed-up, …) • b) R&D Traitement du signal (cas objet faible en régime ‘fond thermique’) • Projets : MIDI, AMBER (déjà utilisables), SPHERE (à court terme), …, • MATISSE & SPICA dont on a intérêt à préparer au mieux les programmes • Date de soumission : 10 (?) Janvier 2011, ANR sur 4 ans nous conduisant à l’intégration finale et aux tests de MATISSE. • Imaginé demandé : 2 post-doc, 2 Thèses, 50-100 k€ MATISSE & SPICA • Interface avec recherche et/ou ANR : corps mineurs, simulation dynamique, reconstruction d’image
Participants and Institutes B. Lopez1, P. Antonelli1, S. Wolf2, W. Jaffe3, R. Petrov1, S. Lagarde1, P. Berio1, R. Navarro4, U. Graser2, U. Beckman4, G. Weigelt5 , F. Vakili1, T. Henning2, J.C. Augereau9, C. Bailet1, J. Behrend5, N. Berruyer1, Y. Bresson1, O. Chesneau1, J.M. Clausse1, C. Connot5, K. Demyk6, W.C. Danchi7, M. Dugué1, E. Elswijk4, S. Flament1, H. Hanenburg4, K.H. Hofmann5, M. Heininger5, R. t. Horst4, J. Hron14, R. Matthar3, J. Kragt4, G. Kroes8, W. Laun2, Ch. Leinert2, H. Linz2, A. Matter1, Ph. Mathias1, K. Meisenheimer2, J.L. Menut1, F. Millour5, U. Neumann2, E. Nussbaum5, A. Niedzielski10, M. Mellein2, L. Mosoni8, S. Ottogalli1, J. Olofsson9, Y. Rabbia1, T. Ratzka2, S. Robbe-Dubois1, A. Roussel1, F. Rigal4, D. Schertl4, F.-X. Schmider1, B. Stecklum11, E. Thiebaut12, M. Vannier1, L. Venema4, K. Wagner2, L.B.F.M. Waters13. 1- Observatoire de la Côte d'Azur, Nice, France, 2- Max Planck Institut für Astronomie, Heidelberg, Germany, 3- Leiden Observatory, the Netherlands, 4- ASTRON-NOVA, Dwingeloo, the Netherlands, 5- Max Planck Institut für Radioastronomie, Bonn, Germany, 6- CETP, Toulouse, France, 7- NASA Goddard Flight Center, Baltimore, USA, 8- Konkoly Observatory Budapest, Hungary, 9- Observatoire de Grenoble, Grenoble, France, 10- Torun Center for Astronomy, Torun, Poland, 11- Thüringer Landessternwarte Tautenburg, Germany, 12- Observatoire de Lyon, France, 13- Astronomical Institute Amsterdam, the Netherlands, 14- Vienna University Austria. With the support of ESO in the frame of the second generation VLTI instruments : A. Richichi (ESO Instrument Scientist of MATISSE), F. Gonté (ESO VLTI System Engineer as MATISSE contact), G. Finger, J.L. Lizon, I. Derek, I. Percheron, G. Ruppretch, P. Haguenhauer, P. Gitton, S. Morel, …
Comparison of the Potential of MATISSE Phase-Referenced Imaging with Closure-Phase Imaging 30 Jy 20 Jy 12 Jy 8 Jy 6 Jy 4 Jy Building block reconstruction with Phase References Building block reconstruction with Closure Phases Model Image, diam. 90 mas Simulated uv coverage, 4 ATs, 3 configurations
Comparison of the Potential of MATISSE Phase-Referenced Imaging with Closure-Phase Imaging 60 mas 90 mas 120 mas 150 mas 180 mas 210 mas Building block reconstruction with Phase References Building block reconstruction with Closure Phases Model Images
MATISSE Successor of MIDI: Imaging capability in the entire mid-IR Successor of AMBER: Extension down to 2.8 mm + General use of closure phases Complement to ALMA + ELT Ground Precursor of space mission to characterize Earth like planets Wavelength range 6-18mm Multi-AperTure Mid-Infrared SpectroScopic Experiment
Towards the Opening of New Spectral Windows Q N L M 3 4 5 Present MIDI Instrument
Towards the Opening of New Spectral Windows Q N L M 3 4 5 MATISSE Instrument
Mineralogy of Proto-Planetary Disks Grain Evolution towards Planetesimals “The building blocks of planets within the terrestrial region of protoplanetary disks” van Boekel et al. 2004, Nature, 432, 479 Normalized flux
MATISSE Characteristics • Number of beams : four, two and three also possible. • Spectral coverage : L, M, N, possible also simultaneously. Optimized for L and N. • Spectral resolution : • low : 20 <R<40 in L&M at 3.5 mm; 20<R<40 in N at 10.5 mm. • Medium : 350<R<550 in L&M at 3.5 mm; 150<R<250 in N at 10.5 mm. • High : 800<R<1000 in L at 3.5 mm • The simultaneous coverage of theL&M bands in low and medium resolutions, and the full coverage of the L band in high spectral resolution require an external fringe tracker. • MATISSE will measure: coherent flux, visibilities, closure phases and differential phases. Differential visibilities can also be derived.
MATISSE Observing Modes • 2 main modes • High sensitivity Mode (High Sens) : • 2T, 3T or 4T • With dedicated sequence of photometry: the photometry is evaluated by two means, • In the Fourier domain, by the low frequency peak, • Using dedicated long sequences of photometric recording. • Without photometry => Phase Oriented Mode • Simultaneous Photometry Mode (Si Phot) : • 2T, 3T or 4T • Photometric channels are used, individual photometry is estimated frame by frame for bright targets, or binned relatively to the chopping frequency.
Specifications on sensitivity on the coherent flux With the current VLTI infrastructure (within 300 ms and 50ms) :
Specifications on sensitivity on the coherent flux With the current VLTI infrastructure (within 300 ms and 50ms) :
For information assuming a Fringe Tracking With 10 minutes of total observing time