330 likes | 652 Views
Geoneutrinos and Hydridic Earth (or primordially Hydrogen-Rich Planet). Leonid Bezrukov Valery Sinev INR, Moscow 2014. Balk Silicat Earth (BSE). Basic idea: Earth chemical composition ≡ meteorite chemical composition ≡ Asteroid B elt (AB ) chemical composition
E N D
GeoneutrinosandHydridicEarth(or primordially Hydrogen-Rich Planet) Leonid Bezrukov Valery Sinev INR, Moscow 2014
Balk SilicatEarth (BSE) Basic idea: Earth chemical composition ≡ meteorite chemical composition ≡ Asteroid Belt (AB) chemical composition Chondritic ratio: R(Th/U)AB = mTh/mU = 3,9
The asteroid belt (shown in white) is located between the orbits of Mars and Jupiter.
HydridicEarth ( primordially Hydrogen-Rich Planet) • Basic idea: Planet chemical composition depends on distance from the Sun. Earth chemical composition ≠Asteroid Belt (AB) chemical composition. R(Th/U)Earth= mTh/mU= 1.7 Leonid Bezrukov. Geoneutrino and Hydridic Earth model. Preprint INR 1364/2013. arXiv:1308.4163
HydridicEarthГидридная Земля Hydrid Earth model can explain the hydrogen degassation of the Earth. The Earth hydrogen degassation – the hydrogen starts from surface of the Earth core and goes to the cosmos space through the long chain of processes. Металлогидридная теория строения Земли В. Н. Ларина позволила объяснить явление водородной дегазации Земли. 1. Ларин В.Н. Гипотеза изначально гидридной Земли (новая глобальная концепция). М., «Недра», 1975, 101 с., (АН СССР. Министерство геологии СССР. ИМГРЭ). 2. Ларин В.Н. Гипотеза изначально гидридной Земли. 2-е изд., перераб. и доп.. - М., Недра. 1980, 216 с 3. Ларин В.Н. Наша Земля (происхождение, состав, строение и развитие изначально гидридной Земли). М. «Агар» 2005, 248 с. 4. Larin,V. N., ed. C. Warren Hunt. Hydridic Earth: the New Geology of Our Primordially Hydrogen-Rich Planet. Polar Publishing, Calgary, Alberta, Canada, 1993.
Separation of chemical elements in solar system was originated by magnetic field of Protosun
Ionization potential, eV Ratio of Earth crust chemical element abundances to Sun chemical element abundances versus first ionization potential of these elements
ratio of meteorite chemical element abundancesto Earth crust chemical element abundances
Geochemical model of primordial Earth (following to Vladimir Larin) • Geosphere Depth range, kmComposition • External core 0 - 100 MgH0,1; SiH0,1; FeH0,1 +MgHn; SiHn; FeHn (n = 10) • Core 100 - 3730 MgHn; SiHn; FeHn (n = 10)
Geochemical model of modern Earth (following to Vladimir Larin) Geosphere Depth range, kmComposition Lithosphere 0 - 150 CaO;MgO; Al2O3; SiO2;Na2O; Fe2O3;H2O Asthenosphere 150 Thin layer of Metalsphere with high hydrogen concentration Metalsphere 150 - 2900 Mg2Si : Si : FeSi = 6 : 3 : 1 External core 2900 - 5000 MgH0,1; SiH0,1; FeH0,1 +MgHn; SiHn; FeHn (n = 10) Inernal core 5000 - 6371 MgHn; SiHn; FeHn (n = 10)
Chemical differentiation of planets: a core issueHervéToulhoat, ValérieBeaumont, ViacheslavZgonnik, Nikolay Larinand Vladimir N. LarinIFP Energies nouvelles, 1 & 4 Avenue de Bois Préau, 92852 Rueil-Malmaison Cedex, FranceRussian Academy of Science, Schmidt Institute of Physics of the Earth,Moscow, RussiaLomonosovMoscow State University, Moscow, Russia arXiv:1208.2909 [astro-ph.EP]
Predicted overall initial composition of the Earth. Major elements are typed in bold (mass fraction larger than0.1%). Chemical differentiation of planets: a core issue.Herve Toulhoat, Valerie Beaumont, Viacheslav Zgonnik, Nikolay Larin, Vladimir N. Larin. Aug 2012. 15 pp. e-Print: arXiv:1208.2909 [astro-ph.EP]
Chemical differentiation of planets: a core issueHervéToulhoat, Valérie Beaumont, ViacheslavZgonnik, Nikolay Larin and Vladimir N. Larin
1 kt per year for BSE 1.5-2.5 MeV 1.0-1.5 MeV N sd, % N sd, % Eff39.59 6.29 16 29.30 4.43 22.58 Rea 20.60 0.62 3 3.16 0.09 3 U 18.99 6.32 33.3 16.44 4.4 25 Th 9.70 6.30 65 S(Th)/S(U) = 0.27 +/- 0.20 72.98 Must be compared with S(Th)/S(U) = 0.11 for Hydridic Earth model. We have only 1.3 s difference.
20 kt per year for BSE 1.5-2.5 MeV 1.0-1.5 MeV N sd, % Eff 791.79 28.14 3.55 Rea 411.99 12.36 3.00 U 379.80 30.73 8.09 Th193.96 30.09 15.51 S(Th)/S(U) =0.27 +/-0.05 17.50 Must be compared with S(Th)/S(U) = 0.11 for Hydridic Earth model. We have 3s
Conclusions 1. On the base of Hydridic Earth model we calculated U; Th and K40 abundances in the Earth: m(U) = 3,15 1017kg, m(Th) = 5,42 1017kg m(K40) = 2,63 1019kg. 2. The obtained Th/U mass ratio for the Earth m(Th)/m(U) = 1,72 is different from chondriticTh/U mass ratio of 3.9 usually used. This predicted by Hydridic Earth model value does not contradict to Borexinogeoneutrino data. The accurate measurement of this ratio could permit to choose between BSE model and Hydridic Earth model. The geoneutrino detector with volume more than 5 kT (miniLENA ) must be constructed for that purpose.
Conclusion 3. In the frame of Hydridic Earth model the part of U and Th mass are contained in the Earth core. We estimated this part by using Borexino data. 4. We calculated the heat production in the Earth induced by U; Th and K40 decays. Total heat production is H = H(U) + H(Th) + H(K40) = 713TW. The K40 decays produce the most part of this heat. We showed that in the frame of the Hydridic Earth model the intrinsic Earth heat must flow mostly through the oceans where the crust is more thin. The obtained value of heat production in the metalsphere and the core is enough to explain the value of global oceanic heat content measured by Argo project. The increasing of the radiogenic intrinsic Earth heat flux can be considered as a source of increasing of global oceanic heat content. 5
conclusions 5. In the frame of Hydridic Earth model the Earth heat flux measured near Earth surface can be not stable. Before the period of the Earth expansion the flux is increased and after the finishing of the Earth expansion period the flux is decreased. The precision measurements of the heat ux in the crust during long period are highly important to investigate the flux stability. 6. We estimated the K40 antineutrino flux on the Earth surface. This flux is comparable with Be7 and pep solar neutrino fluxes on the Earth surface. So the accurate calculation of the K40 induced events in Borexino and Kamlandbackgroundsisneeded.
Heat flow from the Earth • Pollack, H. N., S. J. Hurter, and J. R. Johnson (1993), Heat flow from the Earth's interior: Analysis of the global data set, Rev. Geophys., 31(3), 267–280 • The mean heat flows of continents and oceans are 65 and 101 mW m−2, respectively, which when areally weighted yield a global mean of 87 mW m−2 and a global heat loss of 44.2 × 1012 W
Earth's energy imbalanceAtmos. Chem. Phys., 11, 13421-13449, 2011www.atmos-chem-phys.net/11/13421/2011/ • J. Hansen1,2, M. Sato1,2, P. Kharecha1,2, and K. von Schuckmann31NASA Goddard Institute for Space Studies, New York, NY 10025, USA2Columbia University Earth Institute, New York, NY 10027, USA3Centre National de la Recherche Scientifique, LOCEAN Paris, hosted by Ifremer, Brest, France • Improving observations of ocean heat content show that Earth is absorbing more energy from the Sun than it is radiating to space as heat, even during the recent solar minimum. The inferred planetary energy imbalance is 0.58 ± 0.15 W m−2 during the 6-yr period 2005–2010 • 0,58 W m-2 ∙ 5,1∙ 1014 m2 = 3 ∙1014 W = 300 +/- 76 TW
Примерно 90% избыточного тепла Земля накапливает в океанах. Потому именно океанические исследования являются решающими для уточнения моделей грядущих перемен климата (фото Argo Project).
Argo Project Глобальный охват сети буйков проекта Argo. На данный момент в Мировом океане плавает 3476 аппаратов этой системы мониторинга. Один из таких буёв был показан на предыдущем снимке .
A graph of the sun's total solar irradiance shows that in recent years irradiance dipped to the lowest levels recorded during the satellite era. The resulting reduction in the amount of solar energy available to affect Earth's climate was about .25 watts per square meter, less than half of Earth's total energy imbalance.
- water density, Cp- sea water specific heat capacity, h2- bottom depth, h1 - top depth, T(z)- temperature profile.
http://upload.wikimedia.org/wikipedia/commons/b/bb/1000_Year_Temperature_Comparison.pnghttp://upload.wikimedia.org/wikipedia/commons/b/bb/1000_Year_Temperature_Comparison.png
Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty.Norman G. Loeb, John M. Lyman, Gregory C. Johnson, Richard P. Allan, David R., Doelling, Takmeng Wong, Brian J. Soden& Graeme L. StephensNASA Langley Research Center, USA; Joint Institute for Marine and Atmospheric Research, University of Hawaii at Manoa, USA; NOAA/Pacific Marine Environmental Laboratory, USA; Department of Meteorology, University of Reading, UK; Rosenstiel School of Marine and Atmospheric Science, University of Miami, USA; Jet Propulsion Laboratory, USANature Geoscience. (2012) doi:10.1038/ngeo1375 • We combine satellite data with ocean measurements to depths of 1,800 m, and show that between January 2001 and December 2010, Earth has been steadily accumulating energy at a rate of 0.50±0.43 W m-2 (uncertainties at the 90% confidence level). We conclude that energy storage is continuing to increase in the sub-surface ocean.
Expanding EarthRift zone is the place of Earth surface cracking
Photo of the Apollo 15 CDR setting up a deep drill. Drilling and extraction onthe moon was very difficult and must have caused significant heating. Unless dark drillsegments were immediately placed in the shade they would have been substantially heated.NASA photo AS15-87-11847.
Global map of the flow of heat, in mWm-2, from Earth's interior to the surface.Higher heat flows are observed at the locations of mid-ocean ridges, and oceanic crust has relatively higher heat flows than continental crust.