470 likes | 596 Views
S tatistical models for time series prediction. Autoregressive model(AR(1)). y t =f(y t-1 ) y t = a1 *y t-1. y t = a0+a1 *y t-1 y t-1 = a0+a1 *y t-2 y t-2 = a0+a1 *y t-3 y t = a0 +a1 (a0 + a1(a0+a1*y t-3 )). y t-1. y t-2. Give expectation. White noise.
E N D
Autoregressive model(AR(1)) • y t=f(yt-1 ) • yt = a1 *yt-1
y t = a0+a1 *yt-1 • yt-1 = a0+a1 *yt-2 • yt-2 = a0+a1 *yt-3 • y t= a0 +a1 (a0 + a1(a0+a1*yt-3))
yt-1 yt-2
ARMA(p,q) model • AR(p) • AR(1) • AR(2)
ACF and PACF • AR(1) Give expectation
Variance of yt Variance of constant = 0
ACF of MA • MA(1)
When , • ACF of MA(1)
ARIMA • Example , , roots B = Not stationary
One-order differential • Two-order differential • d-order differential
Given is not stationary get “d” is ARMA(p,q) is ARIMA(p,d,q)
1.Determine the ACF and PACF of series • 2.If ACF or PACF do not match the ARMA rule of recognition , it is not stationary. • 3.Do difference , using ARIMA