190 likes | 428 Views
Pertemuan 15. Analisis Ragam Peubah Ganda (MANOVA III). Matakuliah : I0214 / Statistika Multivariat Tahun : 2005 Versi : V1 / R1. Learning Outcomes. Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu :
E N D
Pertemuan 15 Analisis Ragam Peubah Ganda(MANOVA III) Matakuliah : I0214 / Statistika Multivariat Tahun : 2005 Versi : V1 / R1
Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : • Mahasiswa dapat menerangkan konsep dasar analisis ragam peubah ganda (manova) C2 • Mahasiswa dapat menghitung manova satu klasifikasi C3 • Mahasiswa dapat melakukan uji Fisher dan uji Bartlette C3
Outline Materi • Konsep dasar analisis ragam peubah ganda (manova) • Analisis ragam peubah ganda satu klasifikasi • Uji Fisher • Uji Bartlette
Tests of Significance Wilks' Lambda where Se represents the error SSCP matrix and Sh represents the hypothesis SSCP matrix. For Example In a fixed effects model, Sw is the Se for all effects. While in the randoms effects model Sab is the Se for the main effects and Sw for the interaction. If A is fixed and B is random th Sab is the Se for A main effect and Sw is the Se for the B main effect and the interaction <<ISI>>
<<ISI>> Rao's F Approximation degrees of Freedom Special Note Concerning s If either the numerator or the deminator of s = 0 set s = 1
<<ISI>> Hotelling's Trace Criterion Roy's Largest Latent Root Pillai's Trace Criterion
<<ISI>> • Which of these is "best?“ • Schatzoff (1966) • Roy's largest-latent root was the most sensitive when population centroids differed along a single dimension, but was otherwise least sensative. • Under most conditions it was a toss-up between Wilks' and Hotelling's criteria. • Olson (1976) • Pillai's criteria was the most robust to violations of assumptions concerning homogeneity of the covariance matrix. • Under diffuse noncentrality the ordering was Pillai, Wilks, Hotelling and Roy. • Under concentrated noncentrality the ordering is Roy, Hotelling, Wilks and Pillai. • Final "Best" • When sample sizes are very large the Wilks, Hotelling and Pillai become asymptotically equivalent
<< CLOSING>> • Sampai dengan saat ini Anda telah mempelajari kosep dasar analisis ragam peubah ganda, dan manova satu klasifikasi • Untuk dapat lebih memahami konsep dasar analisis ragam peubah ganda dan manova satu klasifikasi tersebut, cobalah Anda pelajari materi penunjang, website/internet dan mengerjakan latihan