1 / 35

Topologie wirtualne Topologia wirtualna: zadany schemat połączeń pomiędzy

Topologie wirtualne Topologia wirtualna: zadany schemat połączeń pomiędzy procesorami; inaczej mówiąc schemat ich wzajemnego sąsiedztwa. W MPI można określić dwa typy topologii: topologie zdefiniowane przez grafy połączeń między procesorami (przypadek ogólny)

Download Presentation

Topologie wirtualne Topologia wirtualna: zadany schemat połączeń pomiędzy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Topologie wirtualne • Topologia wirtualna: zadany schemat połączeń pomiędzy • procesorami; inaczej mówiąc schemat ich wzajemnego sąsiedztwa. • W MPI można określić dwa typy topologii: • topologie zdefiniowane przez grafy połączeń między procesorami (przypadek ogólny) • topologie kartezjańskie (siatki) • Wyróżnienie topologii siatek jest uzasadnione bardzo częstym ich stosowaniem (rozwiązywanie równań różniczkowych cząstkowych, mnożenie macierzy, itp.) • Tworząc wirtualną topologię definiujemy nowy komunikator.

  2. Przykład: Schemat komunikacji w układzie 12 procesorów w topologii cylindra (kartezjańskiej z periodycznością w wymiarze poziomym).

  3. Motywacja stosowania topologii wirtualnych: • pozwalają na dopasowanie nazewnictwa procesorów do schematu komunikacji • upraszczają strukturę programu i czynią go bardziej czytelnym • informacja o topologii może pozwolić MPI na dodatkową optymalizację komunikacji przez odpowiednie mapowanie wirtualnej i sprzętowej topologii połączeń • topologia kartezjanska pozwala na zdefiniowanie n-wymiarowej siatki z periodycznymi lub nie warunkami brzegowymi

  4. Tworzenie topologii wirtualnej (kartezjańskiej) MPI_CART_CREATE (comm_old, ndims, dims, periods, reorder, comm_cart) comm_old - wejściowy komunikator ndims - liczba wymiarów siatki dims - tablica z rozmiarami siatki w każdym z wymiarów periods - tablica logiczna określająca warunki brzegowe dla każdego z wymiarów (periodyczne dla true) reorder - jesli true numercja procesorów może być zmieniona w tworzonym komunikatorze względem wejściowego komunikatora comm_cart - komunikator o topologii kartezjanskiej powstały w wyniku wykonania procedury int MPI_Cart_create (MPI_Comm comm_old, int ndims, int *dims, int *periods, int reorder, MPI_Comm *comm_cart) MPI_CART_CREATE (COMM_OLD, NDIMS, DIMS, PERIODS, REORDER, COMM_CART,IERROR) INTEGER COMM_OLD, COMM_CART, NDIMS, DIMS(*), PERIODS(*) LOGICAL REORDER, PERIODS(*)

  5. MPI_Comm vu; int dim[2],period[2], reorder; dim[0]=4; dim[1]=3; period[0]=TRUE; period[1]=FALSE; reorder=TRUE; MPI_Cart_create(MPI_COMM_WORLD,2,dim,period,reorder,&vu);

  6. Ogólnie (tworzenie topologii zdefiniowanej przez dowolny graf): MPI_GRAPH_CREATE(comm_old, nnodes, index, edges, reorder, comm_graph) nnodes - liczba wierzchołków grafu index - tablica (liczb całkowitych) określająca liczbędotychczas określonych połączeń pomiędzy wierzchołkamiedges - tablica (liczb całkowitych) określająca połączenia w grafie # sąsiedzi 0 1,2 1 0 2 0,3 3 2 nnodes=4 index=2,3,5,6 edges=1,2,0,0,3,2

  7. Ogólnie (tworzenie topologii zdefiniowanej przez dowolny graf) c.d. w C index[0] zawiera liczbę połączeń procesu 0 index[i-1] zawiera ilość połączeń procesu i edges[j] dla 0 ≤ j ≤ index[0]-1zawiera listę połączeń procesu 0 edges[j] dla index[i-1]≤ j ≤ index[i]-1lista połączeń procesu i>0 w Fortranie index(1) zawiera liczbę połączeń procesu 0 index(i+1)- index(i) zawiera ilość połączeń procesu i edges(j) dla 1 ≤ j ≤ index(1)zawiera listę połączeń procesu 0 edges(j) dla index(i)+1 ≤ j ≤ index(i+1)lista połączeń procesu i>0

  8. Funkcje określające parametry topologii kartezjańskiej Określanie wymiarowości: MPI_CARTDIM_GET(comm, ndims) comm - komunikator z określoną strukturą kartezjańską ndims - wymiarowość struktury kartezjańskiej int MPI_Cartdim_get(MPI_Comm comm, int *ndims) MPI_CARTDIM_GET(COMM, NDIMS, IERROR)INTEGER COMM, NDIMS, IERROR

  9. Określanie współrzędnych kartezjańskich danego procesora MPI_CART_GET(comm, maxdims, dims, periods, coords) comm –komunikator z określoną strukturą kartezjańską maxdims–wymiar przestrzeni kartezjańskiej dims – tablica liczb procesorów wzdłuż poszczególnych współrzędnychperiods– okresowość (tablica logiczna) coords– współrzędne kartezjańskie procesora wołającego procedurę int MPI_Cart_get(MPI_Comm comm, int maxdims, int *dims, int *periods, int *coords) MPI_CART_GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERROR LOGICAL PERIODS(*)

  10. Określanie współrzędnych kartezjańskich procesora o danym rzędzie MPI_CART_COORDS(comm, rank, maxdims, coords) comm - komunikatorrank - rząd procesora maxdims - długość wektora coord coords - tablica całkowita zawierająca współrzędne kartezjańskie danego procesora int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int *coords) MPI_CART_COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR

  11. Określanie rzędu procesora odpowiadającego danym współrzędnym kartezjańskim MPI_CART_RANK(comm, coords, rank) comm - komunikator communicator coords - tablica współrzędnych danego procesorarank - rząd procesora (zwracany przez procedurę) int MPI_Cart_rank(MPI_Comm comm, int *coords, int *rank) MPI_CART_RANK(COMM, COORDS, RANK, IERROR) INTEGER COMM, COORDS(*), RANK, IERROR

  12. Znajdowanie sąsiadów danego procesora wzdłuż danej współrzędnej MPI_CART_SHIFT(comm, direction, disp, rank_source, rank_dest) comm - komunikatordirection - wymiar współrzędnej disp - przesunięcie (> 0: w górę,< 0: w dół) rank_source - rząd sąsiada poprzedniego w kierunku disp (procesu źródłowego)rank_dest - rząd sąsiada następnego w kierunku disp (procesu celowego) int MPI_Cart_shift(MPI_Comm comm, int direction, int disp, int *rank_source, int *rank_dest) MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR)INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR

  13. Utworzenie nowego komunikatora z wybranych współrzędnych MPI_CART_SUB(comm, remain, new_comm) comm – komunikator o zdefiniowanej topologii kartezjańskiejremain – tablica logiczna z wartościa true dla tych wymiarów ktore zostaną skopiowane new_comm - nowy komunikator zawierający wybrane wymiary wejściowej topologii int MPI_Cart_sub (MPI_Comm comm, int *remain, MPI_Comm *new_comm ) MPI_CART_SHIFT (COMM,REMAIN,NEW_COMM, IERROR) INTEGER COMM, COMM,REMAIN(*),NEW_COMM, IERROR

  14. Przesuniecie każdej kolumny tablicy rozposzonej w topologii torusa 3x4 INTEGER comm_2d, rank, coords(2), ierr, source, dest INTEGER status(MPI_STATUS_SIZE), dims(2) LOGICAL reorder, periods(2) REAL a, b CALL MPI_COMM_SIZE(MPI_COMM_WORLD, isize, ierr) IF (isize.LT.12) CALL MPI_ABORT(MPI_COMM_WORLD, ERR, ierr) CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr) a = rank b = -1 dims(1) = 3 dims(2) = 4 periods(1) = .TRUE. periods(2) = .TRUE. reorder = .TRUE. CALL MPI_CART_CREATE(MPI_COMM_WORLD, 2, dims, periods, reorder, comm_2d, ierr) CALL MPI_CART_COORDS(comm_2d, rank, 2, coords, ierr) CALL MPI_CART_SHIFT(comm_2d, 0, coords(2), source, dest, ierr) CALL MPI_SENDRECV(a, 1, MPI_REAL, dest, 13, b, 1, MPI_REAL, source, 13, comm_2d, status, ierr)

  15. Przykład zastosowania topologii wirtualnych: równoległy algorytm metody Jacobiego rozwiązywania zagadanienia brzegowego dla eliptycznych równań różniczkowych cząstkowych

  16. Sformułowanie problemu wewnątrz obszaru, na granicy obszaru.

  17. Dyskretyzacja zagadnienia

  18. Dyskretyzacja zagadnienia na siatce prostokątnej ny nx x=i/nx y=j/ny fij – wartość funkcji stojącej po prawej stronie równania w węźle (i,j) uij – wartość rozwiązania w węźle (i,j) Założenia zadania: fij=0 dla każdego i,j u0i=1, ui0=1 uny+1,0=0, u0,nx+1=0

  19. Rozwiązanie numeryczne metodą iteracji Jacobiego

  20. Kod szeregowy iteracji Jacobiego: część podstawowa C Pętla główna DO WHILE(.NOT.converged) CObliczanie nowego przybliżenia U DO j=1, n DO i=1, n UNEW(i,j)=0.25*(U(i-1,j)+U(i+1,j)+U(i,j-1)+U(i,j+1)- & H*H*F(I,J)) ENDDO ENDDO CKopiujemy nowe przybliżenie do macierzy U DO j=1, n DO i=1, n U(i,j) = UNEW(i,j) ENDDO ENDDO ... CTest zbieżności (kod wycięty z braku miejsca) ENDDO

  21. ny nx Przykładowy podział punktów siatki pomiędzy procesory dla 9 warstw i 3 procesorów

  22. ny nx Projektowanie komunikacji Do obliczenia elementów tablicy u leżących na granicy podziału, procesor o 1 będzie potrzebował elementów u z pierwszego rzędu przypisanego procesorowi 2 oraz ostatniego rzędu przypisanego procesorowi 0.Podobnie, procesory 0 i 2 będą potrzebowały od procesora 1 elementów z odpowiednio pierwszego i ostatniego rzędu jemu przypisanych.

  23. Tworzenie jednowymiarowej topologii kartezjańskiej i podział warstw punktów siatki między procesory Wymiana granicznych wartości u pomiędzy danym procesorema jego topologicznymi sąsiadami Obliczanie przez każdy procesor przydzielonego mu paska tablicy u Obliczanie różnicy pomiędzy poprzednim i obecnym przybliżeniem rozwiązania N Zbieżność? T Stop

  24. c c Tworzenie jednowymiarowej topologii kartezjańskiej c call MPI_CART_CREATE( MPI_COMM_WORLD, 1, numprocs, .false., $ .true., comm1d, ierr ) c c Rząd procesora w nowym komunikatorze comm1d odpowiadającym c jednowymiarowej siatce kartezjańskiej oraz określenie jego sąsiada dolnego c (nbrbottom) i górnego (nbrtop) c call MPI_COMM_RANK( comm1d, myid, ierr ) call MPI_Cart_shift( comm1d, 0, 1, nbrbottom, nbrtop, ierr ) c c Podział pracy: ny wartstw siatki jest dzielone pomiędzy numprocs c procesorów s i e są numerem pierwszej i ostatniej warstwy obsługiwanej c przez dany procesor. c call MPE_DECOMP1D( ny, numprocs, myid, s, e )

  25. Dekompozycja zadania na kawałki odpowiadające poszczególnym procesorom subroutine MPE_DECOMP1D( n, numprocs, myid, s, e ) integer n, numprocs, myid, s, e integer nlocal integer deficit c nlocal = n / numprocs s = myid * nlocal + 1 deficit = mod(n,numprocs) s = s + min(myid,deficit) if (myid .lt. deficit) then nlocal = nlocal + 1 endif e = s + nlocal - 1 if (e .gt. n .or. myid .eq. numprocs-1) e = n return end

  26. c c Inicjalizacja prawej strony równania (f) i tworzenie przybliżenia poczatkowego (u) c call onedinit( u, unew, f, nx, s, e ) c c Część obliczeniowa c call MPI_BARRIER( MPI_COMM_WORLD, ierr ) t1 = MPI_WTIME() do 10 it=1, 100 call exchng1( u, nx, s, e, comm1d, nbrbottom, nbrtop ) call sweep1d( u, f, nx, s, e, unew ) call exchng1( unew, nx, s, e, comm1d, nbrbottom, nbrtop ) call sweep1d( unew, f, nx, s, e, u ) c Obliczanie normy różnicy u i unew; wykorzystana jest globalna operacja redukcji dwork = diff( u, unew, nx, s, e ) call MPI_Allreduce( dwork, diffnorm, 1, MPI_DOUBLE_PRECISION, $ MPI_SUM, comm1d, ierr ) if (diffnorm .lt. 1.0e-5) goto 20 10 continue if (myid .eq. 0) print *, 'Failed to converge' 20 continue

  27. Kod iteracji Jacobiego dla warstwy punktów siatki przypisanej danemu procesorowi c c Perform a Jacobi sweep for a 1-d decomposition. c Sweep from u into unew c subroutine sweep1d( u, f, nx, s, e, unew ) integer nx, s, e double precision u(0:nx+1,s-1:e+1), f(0:nx+1,s-1:e+1), unew(0:nx+1,s-1:e+1) c integer i, j double precision h c h = 1.0d0 / dble(nx+1) do 10 j=s, e do 10 i=1, nx unew(i,j) = 0.25 * (u(i-1,j)+u(i,j+1)+u(i,j-1) + u(i+1,j) - h * h * f(i,j) ) 10 continue return end

  28. Komunikacja: wariant bardzo nieoptymalny (blokujące SEND i RECEIVE) subroutine exchng1( u, nx, s, e, comm1d, nbrbottom, nbrtop ) include 'mpif.h' integer nx, s, e double precision u(0:nx+1,s-1:e+1) integer comm1d, nbrbottom, nbrtop integer status(MPI_STATUS_SIZE), ierr C call MPI_SEND( u(1,e), nx, MPI_DOUBLE_PRECISION, * nbrtop, 0, comm1d, ierr ) call MPI_RECV( u(1,s-1), nx, MPI_DOUBLE_PRECISION, * nbrbottom, 0, comm1d, status, ierr ) call MPI_SEND( u(1,s), nx, MPI_DOUBLE_PRECISION, * nbrbottom, 1, comm1d, ierr ) call MPI_RECV( u(1,e+1), nx, MPI_DOUBLE_PRECISION, * nbrtop, 1, comm1d, status, ierr ) return end

  29. Takie postępowanie daje poprawny kod ale procesor P0 może wymienić dane z P1 dopiero wtedy, gdy wszystkie następne wymienią dane.

  30. Rozpoczynanie albo od SEND albo od RECEIVE w zależności od rzędu procesora (lepszy sposób) subroutine exchng1( u, nx, s, e, comm1d, nbrbottom, nbrtop ) use mpi integer nx, s, e double precision u(0:nx+1,s-1:e+1) integer comm1d, nbrbottom, nbrtop, rank, coord integer status(MPI_STATUS_SIZE), ierr ! call MPI_COMM_RANK( comm1d, rank, ierr ) call MPI_CART_COORDS( comm1d, rank, 1, coord, ierr ) if (mod( coord, 2 ) .eq. 0) then call MPI_SEND( u(1,e), nx, MPI_DOUBLE_PRECISION, & nbrtop, 0, comm1d, ierr ) call MPI_RECV( u(1,s-1), nx, MPI_DOUBLE_PRECISION, & nbrbottom, 0, comm1d, status, ierr ) call MPI_SEND( u(1,s), nx, MPI_DOUBLE_PRECISION, & nbrbottom, 1, comm1d, ierr ) call MPI_RECV( u(1,e+1), nx, MPI_DOUBLE_PRECISION, & nbrtop, 1, comm1d, status, ierr ) else call MPI_RECV( u(1,s-1), nx, MPI_DOUBLE_PRECISION, & nbrbottom, 0, comm1d, status, ierr ) call MPI_SEND( u(1,e), nx, MPI_DOUBLE_PRECISION, & nbrtop, 0, comm1d, ierr ) call MPI_RECV( u(1,e+1), nx, MPI_DOUBLE_PRECISION, & nbrtop, 1, comm1d, status, ierr ) call MPI_SEND( u(1,s), nx, MPI_DOUBLE_PRECISION, & nbrbottom, 1, comm1d, ierr ) endif return end

  31. Wykorzystanie procedury MPI_Sendrecv: proste i prawie optymalne subroutine exchng1( u, nx, s, e, comm1d, nbrbottom, nbrtop ) include 'mpif.h' integer nx, s, e double precision u(0:nx+1,s-1:e+1) integer comm1d, nbrbottom, nbrtop integer status(MPI_STATUS_SIZE), ierr c call MPI_SENDRECV(u(1,e), nx, MPI_DOUBLE_PRECISION, nbrtop, 0, & u(1,s-1), nx, MPI_DOUBLE_PRECISION, nbrbottom, 0, comm1d, status, ierr ) call MPI_SENDRECV(u(1,s), nx, MPI_DOUBLE_PRECISION, nbrbottom, 1, & u(1,e+1), nx, MPI_DOUBLE_PRECISION, nbrtop, 1, comm1d, status, ierr ) return end

  32. Używanie buforowanego SEND subroutine exchng1( u, nx, s, e, comm1d, nbrbottom, nbrtop ) use mpi integer nx, s, e double precision u(0:nx+1,s-1:e+1) integer comm1d, nbrbottom, nbrtop integer status(MPI_STATUS_SIZE), ierr call MPI_BSEND( u(1,e), nx, MPI_DOUBLE_PRECISION, nbrtop, 0, comm1d, ierr ) call MPI_RECV( u(1,s-1), nx, MPI_DOUBLE_PRECISION, nbrbottom, & 0, comm1d, status, ierr ) call MPI_BSEND( u(1,s), nx, MPI_DOUBLE_PRECISION, nbrbottom, & 1, comm1d, ierr ) call MPI_RECV( u(1,e+1), nx, MPI_DOUBLE_PRECISION, nbrtop, & 1, comm1d, status, ierr ) return end

  33. Połączenie nieblokowanego SEND z WAITALL subroutine exchng1( u, nx, s, e, comm1d, nbrbottom, nbrtop ) include 'mpif.h' integer nx, s, e double precision u(0:nx+1,s-1:e+1) integer comm1d, nbrbottom, nbrtop integer status_array(MPI_STATUS_SIZE,4), ierr, req(4) C call MPI_IRECV (u(1,s-1), nx, MPI_DOUBLE_PRECISION, nbrbottom, 0, * comm1d, req(1), ierr ) call MPI_IRECV (u(1,e+1), nx, MPI_DOUBLE_PRECISION, nbrtop, 1, * comm1d, req(2), ierr ) call MPI_ISEND (u(1,e), nx, MPI_DOUBLE_PRECISION, nbrtop, 0, * comm1d, req(3), ierr ) call MPI_ISEND (u(1,s), nx, MPI_DOUBLE_PRECISION, nbrbottom, 1, * comm1d, req(4), ierr ) C call MPI_WAITALL ( 4, req, status_array, ierr ) return end

  34. Porównanie czasów wykonania równoległego kodu iteracji Jacobiego dla zagadnienia Poissona dla różnych wariantów komunikacji

  35. Link do kompletnego zestawu składowych programów równoległych rozwiązywania zagadnienia Poissona przy założeniu topologii jedno- i dwuwymiarowej

More Related