1 / 12

EEXs for Bunch Compression

EEXs for Bunch Compression. A. Meseck. Motivation: avoid correlated energy deviation Idea:. Electron. beam. metamorphose. EEX1 Exchange Z↔X. EEX2 Exchange X↔Z. Quad focuses X Before EEX2. A. Meseck. Horizontal phase space. Beam energy= 7.5 GeV Horzontal : Norm.emitt =0.3mm mrad

vea
Download Presentation

EEXs for Bunch Compression

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EEXs for Bunch Compression A. Meseck

  2. Motivation: avoid correlated energy deviationIdea: Electron beam metamorphose EEX1 Exchange Z↔X EEX2 Exchange X↔Z Quad focuses X Before EEX2 A. Meseck

  3. Horizontal phase space Beam energy= 7.5 GeV Horzontal: Norm.emitt=0.3mm mrad Betax=30m Alphax=0 Longitudinal: 2ps rms pulse duration 2e-4 rms relative energy spread 100 pC Exchanged L L L Exchanged L1 L1 L Horzontal: Norm.emitt=1.7mm mrad Betax=86m + ISR BUT NO CSR Longitudinal: 0.25ps rms pulse duration 1.63e-3 rms relative energy spread 100 pC beam.in 2m ; ~30MeV L L 2m; ~30MeV L Quad=> Lquad=0.5m G=2-3T/m Large Aperture ~ 10cm L L=20m L1=10m Dipole=> Ldipol=15m, r=90m ~ 280m Longitudinal phase space

  4. BMAD-STANDARD X’ [rad] X’ [rad] X’ [rad] X [m] X [m] X [m] Horzontal: Norm.emitt=0.3mm mrad Betax=30m Alphax=0 Horzontal: Norm.emitt=1.7 mm mrad Due to ISR! Can not be reduced as there are larger beta-amplitudes involved in the exchange process Betax=86m (at the end) Horizontal phase space

  5. BMAD-STANDARD σγ/γ σγ/γ σγ/γ σz [m] σz [m] σz [m] Longitudinal: 2ps rms pulse duration 2e-4 rms relative energy spread 100 pC Longitudinal: 0.25ps rms pulse duration 1.63e-3 rms relative energy spread No way to avoid this! 100 pC Longitudinal phase space

  6. Taylor map 1 order More realistic phase space distribution + NO ISR NO CSR X’ [rad] X’ [rad] σγ/γ σγ/γ Horzontal: Norm.emitt=0.3mm mrad Betax=24m Horzontal: Norm.emitt=0.3mm mrad Betax=30m Alphax=0 X [m] X [m] σz [m] σz [m] + NO ISR, NO CSR Longitudinal: 0.23ps rms pulse duration 1.63e-3 rms relative energy spread 100 pC Longitudinal: 2ps rms pulse duration 2e-4 rms relative energy spread 100 pC

  7. Taylor map 3 order More realistic phase space distribution + NO ISR NO CSR σγ/γ X’ [rad] X’ [rad] σγ/γ Horzontal: Norm.emitt=0.315mm mrad Betax=23m Horzontal: Norm.emitt=0.3mm mrad Betax=30m Alphax=0 X [m] σz [m] σz [m] X [m] + NO ISR + NO CSR Longitudinal: 0.25ps rms pulse duration 1.63e-3 rms relative energy spread 100 pC Longitudinal: 2ps rms pulse duration 2e-4 rms relative energy spread 100 pC

  8. Taylor map 3 order More realistic phase space distribution + ISR NO CSR σγ/γ X’ [rad] X’ [rad] σγ/γ Horzontal: Norm.emitt=1.47mm mrad Betax=90m Horzontal: Norm.emitt=0.3mm mrad Betax=30m Alphax=0 X [m] σz [m] σz [m] X [m] + ISR BUT NO CSR Longitudinal: 0.25ps rms pulse duration 1.63e-3 rms relative energy spread 100 pC Longitudinal: 2ps rms pulse duration 2e-4 rms relative energy spread 100 pC

  9. Taylor map 3 order More realistic phase space distribution + NO ISR +CSR X’ [rad] X’ [rad] σγ/γ σγ/γ Horzontal: Norm.emitt=3.18 mm mrad Betax=68m Horzontal: Norm.emitt=0.3mm mrad Betax=30m Alphax=0 X [m] X [m] σz [m] σz [m] CSR but no ISR Longitudinal: 0.247ps rms pulse duration 1.63e-3 rms relative energy spread 100 pC Longitudinal: 2ps rms pulse duration 2e-4 relative energy spread 100 pC

  10. Taylor map 3 order More realistic phase space distribution Comparison ISR with CSR σγ/γ σγ/γ X’ [rad] X’ [rad] Horzontal: Norm.emitt=0.3mm mrad Betax=30m Alphax=0 σz [m] σz [m] X [m] X [m] Longitudinal: 2ps rms pulse duration 2e-4 relative energy spread 100 pC

  11. Taylor map 3 order More realistic phase space distribution ISR + CSR X’ [rad] X’ [rad] σγ/γ σγ/γ Horzontal: Norm.emitt=3.66 mm mrad Betax=65m Horzontal: Norm.emitt=0.3mm mrad Betax=30m Alphax=0 X [m] X [m] σz [m] σz [m] CSR and ISR Longitudinal: 0.247ps rms pulse duration 1.63e-3 relative energy spread 100 pC Longitudinal: 2ps rms pulse duration 2e-4 relative energy spread 100 pC

  12. 7.5 GeV beam (rf curvature included): norm_emitt _x beta_x rms pulse length rms energy spread Initial 3.00000000E-07 3.00000000E+01 5.99585000E-04 2.00000000E-04 Final-thridorder 3.14928525E-07 2.30628088E+02 7.46578955E-05 1.63872330E-03 Final-ISR-noCSR 1.46982166E-06 9.00624160E+01 7.48045872E-05 1.63882406E-03 Final-ISR-CSR 3.66210475E-06 6.53924997E+01 7.41145508E-05 1.63599854E-03 1GeV beam (rescaled EEX Compressor ; rf curvature not included, BMAD-STANDARD): norm_emitt _x beta_x rms pulse length rms energy spread Initial 3.00000000E-07 3.00000000E+01 5.99585000E-04 5.00000000E-05 Final-ISR-noCSR 3.07024662E-07 1.42481898E+02 2.93357319E-05 1.03152631E-03 Final-ISR-CSR 4.49764204E-06 2.69827366E+01 3.24663673E-05 1.00185760E-03 According to Zholents (PAC2011), there is a chance that an increase in initial betafuction reduces the 2D CSR.

More Related