420 likes | 1.97k Views
Ionic Liquids as CO 2 Capture Media. Jessica L. Anderson , JaNeille K. Dixon, Mark J. Muldoon, Joan F. Brennecke, and Edward J. Maginn. Chemrawn XVII Wednesday, 11 July, 2007. Motivation. Designing ILs for specific and selective gas separations – particularly CO 2 capture
E N D
Ionic Liquids as CO2 Capture Media Jessica L. Anderson, JaNeille K. Dixon, Mark J. Muldoon, Joan F. Brennecke, and Edward J. Maginn Chemrawn XVII Wednesday, 11 July, 2007
Motivation • Designing ILs for specific and selective gas separations – particularly CO2 capture • ILs as absorbent for separation of flue gas • CO2, N2, O2, H2O, NOx, SOx, etc. • Supported liquid membranes • Absorber/strippers • Packed beds • Replace volatile and/or corrosive solvents currently used for acid gas capture • Better understand the structure relationships for gas solubility in ILs
Cations Anions Imidazolium Pyridinium Cl-Br- Tf2N- NO3- PF6- TfO- BF4- DCA- Tetraalkylammonium Tetraalkylphosphonium Ionic Liquids • Salts with a melting point below 100 oC • Vast number of ILs can be made • 1018 possible room-temperature ILs!!
Ionic Liquids • Liquid over a large temperature range • Greater than 300 oC! • High thermal stability to 200 oC or higher Imidazolium Tf2N- Abbreviations: 1-hexyl-3-methyl-imidazolium [hmim]+ bis(trifluoromethylsulfonyl)imide [Tf2N]- [hmim][Tf2N]
Ionic Liquid Properties • ILs can be tailored by choice of cation and anion • Properties can be varied by choice of anion, cation and substituents • ILs have negligible vapor pressures (“green” potential) • No contamination of IL into gas stream • No loss of IL from evaporation • Good solvation properties • Has been shown to dissolve polars, non-polars, organic, inorganic, aromatics • Thermally stable • Reusable/recyclable
Research Equipment • Vapor-Liquid Equilibrium • IGA • Low pressure (0-20 bar) • Small sample (~75 mg) • Rubotherm • High pressure/high temperature • Larger sample (~1.5 g) Intelligent Gravimetric Analyzer (IGA) -Hiden Analytical, Inc. Rubotherm
solubility pressure solubility temperature [hmim][Tf2N] Pure Gas Solubility - CO2 • Gas solubility • Important for reusability of ILs • Absorb at low T • Remove at high T • Trend seen for CO2 solubility in all ILs measured Muldoon, et al., Manuscript Submitted
[hmpy][Tf2N] Pure Gas Solubility – Other gases • Gas solubility measured in [hmpy][Tf2N] • Similar trends are seen with other ILs • CO2 has the highest solubility of the gases measured • Good selectivity! Graph adapted from Anderson, et al., Manuscript in Preparation
solubility pressure solubility temperature [hmim][Tf2N] Pure Gas Solubility – SO2 • SO2 solubility in [hmim][Tf2N] • Same as for CO2 Anderson, et al., J Phys Chem B, 110 (31) 2006
[hmim][Tf2N] SO2 Pure Gas Solubility • SO2 has highest solubility in ILs measured • Possibility of simultaneous removal of both SO2 and CO2 Anderson, et al., J Phys Chem B, 110 (31) 2006
Pure Gas Solubility – CO2 • Increasing fluorination increases CO2 solubility • Anion effect greater than cation effect Muldoon, et al., Manuscript Accepted
Pure Gas Solubility – CO2 • Incorporation of ethers, esters has been shown to increase CO2 solubility • Known low toxicity (non-fluorous) ILs can have good CO2 solubility Muldoon, et al., Manuscript Accepted
Chemical Complexation - Literature • Chemical capture of CO2 by free amine • Stoichiometric capture of CO2 • 13C NMR evidence of carbamate formation • Reversible under vacuum with heating Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H., J. Am. Chem., 2002, 124, 926.
Possible Mechanisms • Amine interactions • Carbene interactions
[H2NC3H6mim][Tf2N] Pure Gas Solubilities – CO2 • Chemical complexation • High CO2 solubility • High solubility may not last to high pressures
Mixed Gas Separation - Membrane • Collaboration with DOE NETL • CO2 Selective Membranes: Solution Diffusion • Ionic Liquids: • Negligible Vapor Pressure • Thermally Stable above 200oC • High CO2 Solubility Relative to H2, N2, and CH4 • Ionic liquids in porous polymer supports • Ionic liquid saturated with water before testing • Constant pressure flow system; Pressure slightly greater than 1 atm • Mixed gas permeabilities and selectivities
[hmim][Tf2N] Mixed Gas Separation - Membrane 300oC 250oC 200oC 150oC 100oC 50oC 37oC 10 10000 Selectivity 1000 Permeability, Barrer 100 1 1.5 1.9 2.3 2.7 3.1 Used with permission from D. Luebke 1000/T, K-1
Mixed Gas Separation - Membrane • Probable increase in solubility • Potential to optimize for higher temperature • New rate limiting step at low temperature CO2 CO2 CO2 CO2 Dissolution Evolution Decomplexing H2 Complexing CO2 H2 CO2 H2 CO2 CO2 *CO2 *CO2 H2 H2 Diffusion CO2 CO2 Used with permission from D. Luebke
[H2NC3H6mim][Tf2N] Mixed Gas Separation - Membrane 175oC 150oC 125oC 100oC 75oC 50oC 1000 100 100 10 Selectivity Permeability, Barrer 10 1 2.0 2.2 2.4 2.6 2.8 3.0 3.2 Used with permission from D. Luebke 1000/T, K-1
Mixed Gas Separation - Membrane FT-SILM (75oC) Lin et al., Science 311 (2006) 639. (R.T. and below) SILM (37oC) CO2/H2 Selectivity Polymer Literature Data Permeability, Barrer Used with permission from D. Luebke
Conclusions • ILs are possible ‘green’ solvents for current technologies • Tunable • Reusable • Able to absorb gas both physically and chemically • Physical Absorption • Good selectivities between gases • Anion effect larger than cation effect • Solubility of gas increases with increasing fluorination • Chemical Absorption • Chemical absorbents have the highest CO2 solubilities • Strength of the chemical CO2-IL bond can be “tuned” • Enthalpies are lower for ILs than for the current technology • Best selectivity/permeability reported for CO2/H2 membrane separation (Luebke et al.)
Acknowledgements • U.S. Department of Energy, National Energy Technology Laboratory, Award Nos. DE-FC26-04NT42122 and DE-FC26-07NT43091 • State of Indiana 21st Century Fund