1 / 36

Vishwani D. Agrawal James J. Danaher Professor Dept. of Electrical and Computer Engineering

ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Linear Programming – A Mathematical Optimization Technique. Vishwani D. Agrawal James J. Danaher Professor Dept. of Electrical and Computer Engineering Auburn University, Auburn, AL 36849 vagrawal@eng.auburn.edu

Download Presentation

Vishwani D. Agrawal James J. Danaher Professor Dept. of Electrical and Computer Engineering

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ELEC 5270/6270 Fall 2007Low-Power Design of Electronic CircuitsLinear Programming – A Mathematical Optimization Technique Vishwani D. Agrawal James J. Danaher Professor Dept. of Electrical and Computer Engineering Auburn University, Auburn, AL 36849 vagrawal@eng.auburn.edu http://www.eng.auburn.edu/~vagrawal/COURSE/E6270_Fall07/course.html ELEC6270 Fall 07, Lecture 8

  2. What is Linear Programming • Linear programming (LP) is a mathematical method for selecting the best solution from the available solutions of a problem. • Method: • State the problem and define variables whose values will be determined. • Develop a linear programming model: • Write the problem as an optimization formula (a linear expression to be minimized or maximized) • Write a set of linear constraints • An available LP solver (computer program) gives the values of variables. ELEC6270 Fall 07, Lecture 8

  3. Types of LPs • LP – all variables are real. • ILP – all variables are integers. • MILP – some variables are integers, others are real. • A reference: • S. I. Gass, An Illustrated Guide to Linear Programming, New York: Dover, 1990. ELEC6270 Fall 07, Lecture 8

  4. A Single-Variable Problem • Consider variable x • Problem: find the maximum value of x subject to constraint, 0 ≤ x ≤ 15. • Solution: x = 15. Constraint satisfied x 15 0 Solution x = 15 ELEC6270 Fall 07, Lecture 8

  5. Single Variable Problem (Cont.) • Consider more complex constraints: • Maximize x, subject to following constraints: • x ≥ 0 (1) • 5x ≤ 75 (2) • 6x ≤ 30 (3) • x ≤ 10 (4) 0 5 10 15 x (1) (2) (3) (4) All constraints satisfied Solution, x = 5 ELEC6270 Fall 07, Lecture 8

  6. A Two-Variable Problem • Manufacture of chairs and tables: • Resources available: • Material: 400 boards of wood • Labor: 450 man-hours • Profit: • Chair: $45 • Table: $80 • Resources needed: • Chair • 5 boards of wood • 10 man-hours • Table • 20 boards of wood • 15 man-hours • Problem: How many chairs and how many tables should be manufactured to maximize the total profit? ELEC6270 Fall 07, Lecture 8

  7. Formulating Two-Variable Problem • Manufacture x1 chairs and x2 tables to maximize profit: P = 45x1 + 80x2 dollars • Subject to given resource constraints: • 400 boards of wood, 5x1 + 20x2 ≤ 400 (1) • 450 man-hours of labor, 10x1 + 15x2 ≤ 450 (2) • x1 ≥ 0 (3) • x2 ≥ 0 (4) ELEC6270 Fall 07, Lecture 8

  8. Solution: Two-Variable Problem 40 30 20 10 0 P = 2200 Best solution: 24 chairs, 14 tables Profit = 45×24 + 80×14 = 2200 dollars Man-power constraint (1) Tables, x2 (24, 14) Material constraint (3) P = 0 (4) 0 10 20 30 40 50 60 70 80 90 Chairs, x1 increasing (2) Profit decresing ELEC6270 Fall 07, Lecture 8

  9. Change Profit of Chair to $64/Unit • Manufacture x1 chairs and x2 tables to maximize profit: P = 64x1 + 80x2 dollars • Subject to given resource constraints: • 400 boards of wood, 5x1 + 20x2 ≤ 400 (1) • 450 man-hours of labor, 10x1 + 15x2 ≤ 450 (2) • x1 ≥ 0 (3) • x2 ≥ 0 (4) ELEC6270 Fall 07, Lecture 8

  10. Solution: $64 Profit/Chair P = 2880 40 30 20 10 0 Best solution: 45 chairs, 0 tables Profit = 64×45 + 80×0 = 2880 dollars Man-power constraint (1) Tables, x2 (24, 14) Material constraint (3) P = 0 (4) 0 10 20 30 40 50 60 70 80 90 Chairs, x1 (2) increasing Profit decresing ELEC6270 Fall 07, Lecture 8

  11. Primal problem Fixed resources Maximize profit Variables: x1 (number of chairs) x2 (number of tables) Maximize profit 45x1+80x2 Subject to: 5x1 + 20x2 ≤ 400 10x1 + 15x2 ≤ 450 x1 ≥ 0 x2 ≥ 0 Solution: x1 = 24 chairs, x2 = 14 tables Profit = $2200 Dual Problem Fixed profit Minimize value Variables: w1 ($ value/board of wood) w2 ($ value/man-hour) Minimize value 400w1+450w2 Subject to: 5w1 + 10w2 ≥ 45 20w1 + 15w2 ≥ 80 w1 ≥ 0 w2 ≥ 0 Solution: w1 = $1, w2 = $4 value = $2200 Primal-Dual Problems ELEC6270 Fall 07, Lecture 8

  12. The Duality Theorem • If the primal has a finite optimal solution, so does the dual, and the optimum values of the objective functions are equal. ELEC6270 Fall 07, Lecture 8

  13. LP for n Variables n minimize Σcj xj Objective function j =1 n subject to Σaij xj ≤ bi,i = 1, 2, . . ., m j =1 n Σcij xj = di,i = 1, 2, . . ., p j =1 Variables: xj Constants: cj, aij, bi, cij, di ELEC6270 Fall 07, Lecture 8

  14. Algorithms for Solving LP • Simplex method • G. B. Dantzig, Linear Programming and Extension, Princeton, New Jersey, Princeton University Press, 1963. • Ellipsoid method • L. G. Khachiyan, “A Polynomial Algorithm for Linear Programming,” Soviet Math. Dokl., vol. 20, pp. 191-194, 1984. • Interior-point method • N. K. Karmarkar, “A New Polynomial-Time Algorithm for Linear Programming,” Combinatorica, vol. 4, pp. 373-395, 1984. • Course website of Prof. Lieven Vandenberghe (UCLA), http://www.ee.ucla.edu/ee236a/ee236a.html ELEC6270 Fall 07, Lecture 8

  15. Basic Ideas of Solution methods Extreme points Extreme points Objective function Objective function Constraints Constraints Interior-point methods: Successively iterate with interior spaces of analytic convex boundaries. Simplex: search on extreme points. ELEC6270 Fall 07, Lecture 8

  16. Integer Linear Programming (ILP) • Variables are integers. • Complexity is exponential – higher than LP. • LP relaxation • Convert all variables to real, preserve ranges. • LP solution provides guidance. • Rounding LP solution can provide a non-optimal solution. ELEC6270 Fall 07, Lecture 8

  17. Solving TSP: Five Cities Distances (dij) in miles (symmetric TSP, general TSP is asymmetric) ELEC6270 Fall 07, Lecture 8

  18. Search Space: No. of Tours • Asymmetric TSP tours • Five-city problem: 4 × 3 × 2 × 1 = 24 tours • Nine-city problem: 362,880 tours • 14-city problem: 87,178,291,200 tours • 50-city problem: 49! = 6.08×1062 tours Time for enumerative search assuming 1 μs per tour evaluation = 1.93×1055 years ELEC6270 Fall 07, Lecture 8

  19. A Greedy Heuristic Solution Tour length = 10 + 5 + 12 + 6 + 27 = 60 miles (non-optimal) ELEC6270 Fall 07, Lecture 8

  20. ILP Variables, Constants and Constraints 4 x14 ε [0,1] d14 = 12 5 x15 ε [0,1] 1 d15 = 27 Integer variables: xij = 1, travel i to j xij = 0, do not travel i to j Real variables: dij = distance from i to j x12 ε [0,1] d12 = 18 x13 ε [0,1] d13 = 10 2 3 x12 + x13 + x14 + x15 = 2 four other similar equations ELEC6270 Fall 07, Lecture 8

  21. Objective Function and ILP Solution 5 i - 1 Minimize ∑ ∑ xij × dij i = 1 j = 1 ∑ xij = 2 for all i j ≠ i ELEC6270 Fall 07, Lecture 8

  22. ILP Solution d54 = 6 4 5 d45 = 6 1 d21 = 18 d13 = 10 2 3 d32 = 5 Total length = 45 but not a single tour ELEC6270 Fall 07, Lecture 8

  23. Additional Constraints for Single Tour • Following constraints prevent split tours. For any subset S of cities, the tour must enter and exit that subset: ∑ xij ≥ 2 for all S, |S| < 5 i ε S j ε S Remaining set At least two arrows must cross this boundary. Subset ELEC6270 Fall 07, Lecture 8

  24. ILP Solution 4 d54 = 6 d41 = 12 5 1 d25 = 20 d13 = 10 2 3 d32 = 5 Total length = 53 ELEC6270 Fall 07, Lecture 8

  25. ILP Example: Test Minimization • A combinational circuit has n test vectors that detect m faults. Each test detects a subset of faults. Find the smallest subset of test vectors that detects all m faults. • ILP model: • Assign an integer variable ti ε[0,1] to ith test vector such that ti = 1, if we select ti, otherwise ti= 0. • Define an integer constant fij ε [0,1] such that fij = 1, if ith vector detects jth fault, otherwise fij = 0. Values of constants fij are determined by fault simulation. ELEC6270 Fall 07, Lecture 8

  26. Test Minimization by ILP n minimize Σti Objective function i=1 n subject to Σfij ti ≥ 1,j = 1, 2, . . ., m i=1 ELEC6270 Fall 07, Lecture 8

  27. 3V3F: A 3-Vector 3-Fault Example Test vector i Variables: t1, t2, t3 ε [0,1] Minimize t1 + t2 + t3 Subject to: t1 + t2 ≥ 1 t2 + t3 ≥ 1 t1 + t3 ≥ 1 Fault j ELEC6270 Fall 07, Lecture 8

  28. 3V3F: Solution Space t3 ILP solutions (optimum) 1 Non-optimum solution 1st LP solution (0.5, 0.5, 0.5) Rounding and 2nd ILP solution (1.0, 0.5, 0.5) t2 1 Rounding and 3rd LP solution (1.0, 1.0, 0.0) 1 t1 ELEC6270 Fall 07, Lecture 8

  29. Characteristics of ILP • Worst-case complexity is exponential in number of variables. • Linear programming (LP) relaxation, where integer variables are treated as real, gives a lower bound on the objective function. • Recursive rounding of relaxed LP solution to nearest integers gives an approximate solution to the ILP problem. • K. R. Kantipudi and V. D. Agrawal, “A Reduced Complexity Algorithm for Minimizing N-Detect Tests,” Proc. 20th International Conf. VLSI Design, January 2007, pp. 492-497. ELEC6270 Fall 07, Lecture 8

  30. 3V3F: LP Relaxation and Rounding ILP – Variables: t1, t2, t3 ε [0,1] Minimize t1 + t2 + t3 Subject to: t1 + t2 ≥ 1 t2 + t3 ≥ 1 t1 + t3 ≥ 1 • LP relaxation: t1, t2, t3 ε (0.0, 1.0) • Solution: t1 = t2 = t3 = 0.5 • Recursive rounding: • round one variable, t1 = 1.0 • Two-variable LP problem: • Minimize t2 + t3 • subject to t2 + t3 ≥ 1.0 • LP solution t2 = t3 = 0.5 • (2) round a variable, t2 = 1.0 • ILP constraints are satisfied • solution is t1 = 1, t2 = 1, t3 = 0 ELEC6270 Fall 07, Lecture 8

  31. Recursive Rounding Algorithm • Obtain a relaxed LP solution. Stop if each variable in the solution is an integer. • Round the variable closest to an integer. • Remove any constraints that are now unconditionally satisfied. • Go to step 1. ELEC6270 Fall 07, Lecture 8

  32. Recursive Rounding • ILP has exponential complexity. • Recursive rounding: • ILP is transformed into k LPs with progressively reducing number of variables. • Number of LPs, k, is the size of the final solution, i.e., the number of non-zero variables in the test minimization problem. • Recursive rounding complexity is k × O(np), where k ≤ n, n is number of variables. ELEC6270 Fall 07, Lecture 8

  33. Four-Bit ALU Circuit ELEC6270 Fall 07, Lecture 8

  34. ILP vs. Recursive Rounding 100 75 50 25 0 ILP Recursive Rounding CPU s 0 5,000 10,000 15,000 Vectors ELEC6270 Fall 07, Lecture 8

  35. N-Detect Tests (N = 5) ELEC6270 Fall 07, Lecture 8

  36. Finding LP/ILP Solvers • R. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, South San Francisco, California: Scientific Press, 1993. Several of programs described in this book are available to Auburn users. • B. R. Hunt, R. L. Lipsman, J. M. Rosenberg, K. R. Coombes, J. E. Osborn and G. J. Stuck, A Guide to MATLAB for Beginners and Experienced Users, Cambridge University Press, 2006. • Search the web. Many programs with small number of variables can be downloaded free. ELEC6270 Fall 07, Lecture 8

More Related