1 / 53

Flashback Logging Internals

Flashback Logging Internals. Julian Dyke Independent Consultant. Web Version - December 2007. juliandyke.com. © 2007 Julian Dyke. Extended Clusters versus Fast Start Failover Flashback Database Flashback Logging Internals. Agenda. Extended Clusters versus Fast Start Failover.

vilina
Download Presentation

Flashback Logging Internals

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Flashback Logging Internals Julian Dyke Independent Consultant Web Version - December 2007 juliandyke.com ©2007 Julian Dyke

  2. Extended Clusters versus Fast Start Failover Flashback Database Flashback Logging Internals Agenda

  3. Extended ClustersversusFast Start Failover

  4. Instance 2 Instance 1 Node 2 Node 1 Extended ClustersOverview Public Network Private Network Quorum Site3 Storage Network Storage Networks Database Database Site1 Site2

  5. Extended ClustersOverview • Currently the Holy Grail of high availability • RAC nodes located at physically separate sites • In-built disaster recovery • In the event of a site failure, database is still available • Active / Active configuration • Users can access database via either site • Storage is duplicated at each site • Can use ASM or vendor-supplied storage technology to ensure all writes are replicated to storage on each site

  6. Extended ClustersAdvantages and Disadvantages • Advantages • Disaster recovery - all changes written to both sites • Active / Active - both sites available • Disadvantages • Complexity • Cache fusion traffic between sites • Requires Enterprise Edition licences + RAC option • Cost of inter-site fibre network

  7. Quorum Observer Instance 2 Instance 1 Node 2 Node 1 Fast Start FailoverOverview Public Network Private Network Site3 Storage Network Storage Networks Database Database Site1 - Primary Site2 - Standby

  8. Fast Start FailoverOverview • Target standby database must be nominated • Failure of primary database can be detected and automatically failed over to nominated standby database • Primary database can potentially be reinstated automatically • Requires flashback logging • Requires DGMGRL configuration • Must configure MAXIMUM AVAILABILITY protection mode • Standby database archive log destination must be configured as LGWR SYNC

  9. Fast Start FailoverAdvantages & Disadvantages • Advantages • No interconnect network required between sites • No fibre network required between sites • RAC licences not required if each site is a single-instance • Disadvantages • Active / Passive • Requires Enterprise Edition licence

  10. Fast Start FailoverObserver • Requires third independent site with: • Oracle client installation (administrative user) • Oracle Net configuration to primary and standby • On third site: • DGMGRL starts observer • Observer monitors state of primary database • If primary database fails observer initiates failover to target standby database • Observer checks if standby database can still see primary database before initiating failover • Performance impact of observer process on primary / standby is minimal

  11. FlashbackDatabase

  12. Flashback DatabaseIntroduction • Introduced in Oracle 10.1 • Uses past block images to back out changes to a database • Allows database to be recovered to a previous time to correct problems caused by: • logical data corruptions • user errors • Amount of time required to flashback a database is proportional to how far back database must be reverted • Time to restore and recover entire database could be much longer

  13. Flashback DatabaseIntroduction • During normal database operation, Oracle occasionally logs past block images in flashback logs • Flashback logs are • written sequentially • not archived • Oracle automatically creates, resizes and deletes flashback logs in the flash recovery area • DBA should be aware of flashback logs • To monitor performance • To decide how much space to allocate to flash recovery area

  14. Flashback DatabaseFlashing Back • Before images are used to restore database to a point in the past • Forward recovery is then used to bring the database to a consistent state • Oracle returns datafiles to previous point in time • Not auxiliary files such as initialization parameter files

  15. Flashback DatabaseApplications • Flashback recovery of database to earlier SCN • Testing • Application / User errors • Recovery through resetlogs • Opening standby database with write access • Fast start failover • Automatic reinstantiation of old primary following fast start failover to standby • Alternative to delayed redo application for physical or logical standby databases

  16. Flashback DatabaseWhat do we already know? • Introduced in Oracle 10.1 • Requires flash recovery area • Maintains before image logs for block changes • Records are appended to flashback logs • Uses RVWR background process

  17. Flashback DatabaseWhat don't we know? • Are index blocks logged? • Is undo logged? • Is temporary segments logged? • What happens when a segment is deleted • Is a block logged every time it is changed? • If not, how does Oracle know? • What when an object leaves the buffer cache • Is there any control structure • What about multiple block sizes? • How does it work in RAC? • What about contention - latches? • Undocumented parameters? • When is flashback overwritten?

  18. Flash Recovery AreaPrerequisites • Archiving must be enabled • Flash recovery area must be configured using • DB_RECOVERY_FILE_DEST_SIZE - size of flashback recovery area in bytes • DB_RECOVERY_FILE_DEST - location of flashback recovery area • For example: SQL> ALTER SYSTEM SET db_recovery_file_dest_size = 10G; SQL> ALTER SYSTEM SET db_recovery_file_dest = '/oradata/recovery';

  19. Flashback DatabaseParameters • One supported parameter: • DB_FLASHBACK_RETENTION_TARGET • Specifies upper limit on how far back in time database may be flashed back • Specified in minutes • Default value is 1440 minutes (24 hours) • Affects number of flashback logs retained in flash recovery area

  20. Flashback DatabaseConfiguration • To enable flashback logging database must be mounted but not open SQL> STARTUP MOUNTSQL> ALTER DATABASE FLASHBACK ON;SQL> ALTER DATABASE OPEN; • To disable flashback logging use: SQL> ALTER DATABASE FLASHBACK OFF; • To check if flashback is currently enabled: SQL> SELECT flashback_on FROM v$database; FLASHBACK_ON------------YES

  21. Flashback DatabaseSystem Change Numbers and Times • To check current SCN use: SQL> SELECT current_scn FROM v$database; • To check oldest SCN that can be flashed back to use: SQL> SELECT oldest_flashback_scn FROM v$flashback_database_log; • To check oldest time that can be flashed back to use: SQL> ALTER SESSION SET nls_date_format = 'DD-MON-YYYY HH24:MI:SS'; SQL> SELECT oldest_flashback_time FROM v$flashback_database_log;

  22. Flashback DatabaseOperation • To flashback the database use the following syntax: SQL> FLASHBACK [ STANDBY ] DATABASE [ database ] { TO { { SCN | TIMESTAMP } expr | RESTORE POINT restore_point } | TO BEFORE { SCN | TIMESTAMP } expr | RESETLOGS} }; • Database must be mounted and not open to flashback • For example SQL> SHUTDOWN IMMEDIATESQL> STARTUP MOUNTSQL> FLASHBACK DATABASE TO SCN 461918; Flashback complete. SQL> ALTER DATABASE OPEN READ ONLY; SQL> ALTER DATABASE OPEN RESETLOGS

  23. Flashback DatabaseRestrictions • Cannot flash back to an SCN ahead of the current SCN • Cannot flash back to a time in the future • Database must be opened with read write access • Cannot open read only • Database must be opened with RESETLOGS • Cannot flash back if datafile resized (shrunk) during flashback period

  24. Flashback DatabaseDynamic Performance Views • V$FLASHBACK_DATABASE_LOG • V$FLASHBACK_DATABASE_STAT

  25. Flashback DatabaseDynamic Performance Views • V$FLASHBACK_DATABASE_LOGFILE

  26. FlashbackLoggingInternals

  27. Flashback Log FilesLocation and Naming • Stored in Flash Recovery Area (mandatory) • Subdirectory is <database_name>/flashback • Use Oracle-Managed Files (OMF) (mandatory) • For example • o1_mf_3504ofnh_.flb • o1_mf_350g3r24_.flb • o1_mf_350jl666_.flb • Used sequentially • Can be reused • Generated when required • Dropped when space required in flash recovery area

  28. Flashback Log FilesSizing • Flashback log size same as database block size • e.g. 4096 or 8192 • Initial size is 1001 x block size • determined by • _flashback_log_size (defaults to 1000) • additional block for file header • e.g • 1001 x 8192 = 8200192 bytes • Subsequent size reduces to 3989504 • probably determined by • size of flashback generation buffer (3981204) • additional block for file header • note there is a rounding error here

  29. Flashback Log FilesControlfile Dumps SQL> ALTER SESSION SET EVENTS 'immediate trace name controlf level 3'; *******************************************************************FLASHBACK LOGFILE RECORDS*******************************************************************FLASHBACK LOG FILE #4: (name #12) /oradata/recovery/PROD/flashback/o1_mf_350kw47d_.flbThread 1 flashback log links: forward: 5 backward: 3size: 486 seq: 4 bsz: 8192 nab: 0x1e7 flg: 0x0 magic: 3 dup: 1Low scn: 0x0000.00071169 05/20/2007 14:05:08High scn: 0x0000.00071980 05/02/2007 15:16:48 FLASHBACK LOG FILE #5: (name #13) /oradata/recovery/PROD/flashback/o1_mf_350p2jz0_.flbThread 1 flashback log links: forward: 6 backward: 4size: 486 seq: 5 bsz: 8192 nab: 0x1e7 flg: 0x0 magic: 5 dup: 1Low scn: 0x0000.00071980 05/20/2007 15:16:48High scn: 0x0000.0007247b 05/02/2007 16:43:13 FLASHBACK LOG FILE #6: (name #14) /oradata/recovery/PROD/flashback/o1_mf_350v4kz1_.flbThread 1 flashback log links: forward: 1 backward: 5size: 486 seq: 4 bsz: 8192 nab: 0xffffffff flg: 0x0 magic: 4 dup: 1Low scn: 0x0000.0007247b 05/20/2007 16:43:13High scn: 0xffff.ffffffff 05/02/2007 00:00:00 Current Logfile

  30. Flashback LoggingRecovery Writer Process • Flashback uses the recovery writer (RVWR) background process • Copies flashback blocks from flashback generation buffer to flashback logs SELECT descriptionFROM v$bgprocessWHERE name = 'RVWR'; DESCRIPTION---------------Recovery Writer • Checks for records in flashback generation buffer every 3 seconds • Waits on rdbms ipc message • In Linux records written to disk using pwrite64 • Multi block writes (8192 byte records)

  31. Flashback LoggingRecovery Writer Process • Recovery process structure is linked into SGA global area SELECT addr FROM x$ksbdpWHERE ksbdpnam = 'RVWR'; ADDR---------------2000D860 SELECT ksmfsnam,ksmfstyp FROM x$ksmfsvWHERE ksmfsadr = '2000D860'; KSMFSNAM KSMFSTYP-------- -------krfwrp_ ksbdp • ksbdp structure for RVWR background process is krfwrp_

  32. Flashback Generation BufferSizing • Flashback uses a flashback generation buffer • Size of generation buffer is recorded in V$SGASTAT • Size is determined by _flashback_generation_buffer_size • defaults to 4194304 • To verify size of buffer use SELECT bytes FROM v$sgastatWHERE pool = 'shared pool'AND name = 'flashback generation buff'; BYTES----------4194304

  33. Flashback Generation BufferGranules • Flashback generation buffer appears to be limited to a single granule • If granule size is less than _flashback_generation_buffer_size • buffer size will be rounded down • For example for a 4mb granule size: SELECT bytes FROM v$sgastatWHERE pool = 'shared pool'AND name = 'flashback generation buff'; BYTES----------3981204 • Granule size can be controlled using _ksmg_granule_size

  34. Flashback Generation BufferLocation • To determine location of flashback generation buffer use: ALTER SYSTEM SET EVENTS 'immediate trace name global_area level 2'; ksbdp krfwrp_ [2000D860, 2000D88C) = 0000007B 2AE1C924 00000000 00000000 ...Dump of memory from 0x2000D870 to 0x2000D88C2000D870 52575652 00000200 00006723 0005A080 [RVWR....#g......]2000D880 00000001 199DC5EA 00040081 KSBDPPRO = 0X2AE1C924 KSBDPSER = 1 KSBDPERR = 0 KSBDPNAM = 'RVWR' KSBDPFLG = 2 Location of RVWR background process krfwb krfwbf_ [2000D8DC 2000D970) = 000001E5 00002000 003C7288 00001FE8 ...Dump of memory from 0x2000D8CC to 0x2000D9F02000D8C0 27834200 2000D8D0 003CBD94 000001E6 000001E6 000000032000D8E0 29A1B71C 00000002 00037D60 00000001 etc.. Location of flashback generation buffer • In this 32 bit example location is 0x27834200

  35. Flashback Generation BufferShared Pool Reserved Area • Size of flashback generation buffer is affected by shared pool reserved area • By default 5% of each granule is allocated to shared pool reserved area • For example our flashback generation buffer is 0x27834200 • Granule size is 4MB SELECT ksmchptr,ksmchsiz FROM x$ksmsprWHERE ksmchptr >= '27800000'AND ksmchptr < '27C00000'; SELECT MAX(baseaddr), gransize FROM x$ksmgeWHERE baseaddr <= '27834200'; KSMCHPTR KSMCHSIZ-----------------------27800038 2427800050 21288827833FE8 24 MAX(BASEADDR) GRANSIZE-------------------------27800000 4194304

  36. Flashback LoggingLatches • The following latches are used by flashback logging • flashback allocation • flashback mapping • flashback copy • flashback sync request • flashback FBA barrier • flashback SCN barrier • hint flashback FBA barrier • flashback hint SCN barrier • By default each latch only has one child except • flashback copy latch • maximum number of copy latches may be determined by _flashback_copy_latches

  37. Flashback Log FilesDumps • The following dumps are undocumented • All flashback records for a thread can be dumped using: SQL> ALTER SYSTEM DUMP FLASHBACK THREAD <thread_number> • In a single instance database thread_number will always be 1 • All flashback records for a specific flashback logfile can be dumped using SQL> ALTER SYSTEM DUMP FLASHBACK LOGFILE <log_file_number> • Flashback logfiles are numbered from 1 upwards

  38. Flashback Log FilesDumps • All flashback records for a specific record type can be dumped using: SQL> ALTER SYSTEM DUMP FLASHBACK LOGFILE <log_file_number> TYPE <type>; • All flashback records for a specific database block number can be dumped using: SQL> ALTER SYSTEM DUMP FLASHBACK LOGFILE <log_file_number> DBA <absolute_file_number> . <block_number>; • By default block dumps etc are included in the dump file • To dump a summary of records in the flashback log use: SQL> ALTER SYSTEM DUMP FLASHBACK LOGFILE <log_file_number> LOGICAL;

  39. Flashback Log FilesDumps • Example of header DUMP OF FLASHBACK LOG FILE 9 FILE HEADER: Compatibility Vsn = 169869568=0xa200100 Db ID=308670124=0x1265eeac, Db Name='FLASH' Activation ID=308689068=0x126638ac Control Seq=318=0x13e, File size=972=0x3cc File Number=9, Blksiz=8192, File Type=8 FLASH BACK FLASHBACK HEADER: Flashback Block Header: Seq: 9 Block: 1 Cks: 0x22b Flag: 0x1 Lst: 0 description:"Thread 0001, Seq# 0000000009, SCN 0x00000003a2d7" thread: 1 seq: 9 version 0 nab: 0x3cd reset logs count: 0x25102f2c scn: 0x0000.00000001 formatted blocks: 972 usable blocks: 972 magic: 5 previous magic: 0 flags: 0x0 Low scn: 0x0000.0003a2d7 05/07/2007 10:31:48 High scn: 0x0000.000401d3 05/26/2007 16:59:06 Last Marker: fba: (lno 0 thr 0 seq 0 bno 0 bof 0)

  40. Flashback DatabaseDumps • Example of block image **** Record at fba: (lno 9 thr 1 seq 9 bno 966 bof 692) **** RECORD HEADER: Type: 1 (Block Image) Size: 28 RECORD DATA (Block Image): file#: 1 rdba: 0x00406efc Next scn: 0x0000.00000000 [0.0] Flag: 0x0 Block Size: 8192 BLOCK IMAGE: buffer rdba: 0x00406efc scn: 0x0000.00034d8e seq: 0x01 flg: 0x06 tail: 0x4d8e0601 frmt: 0x02 chkval: 0xf52b type: 0x06=trans dataHex dump of block: st=0, typ_found=1Dump of memory from 0xB56CDC00 to 0xB56CFC00B56CDC00 0000A206 00406EFC 00034D8E 06010000 [.....n@..M......]B56CDC10 0000F52B 00000001 0000023D 00034D8C [+.......=....M..] <hex block dump> ..... <symbolic block dump>

  41. Flashback RecordsRecord Types • Every flashback record has a type

  42. Flashback LoggingRVWR Background Process Dumps • Some additional RVWR background process dumps can be executed from ORADEBUG • Dumping session must attach to RVWR process • Either use operating system process id $ ps -ef | grep rvwr | grep -v greporacle 11055 1 0 16:04 ? 00:00:00 ora_rvwr_PROD SQL> ORADEBUG SETOSPID 11055; • Or use Oracle process id SQL> SELECT pid FROM v$process WHERE addr IN( SELECT paddr FROM v$bgprocess WHERE name = 'RVWR'); PID---20 SQL> ORADEBUG SETORAPID 20;

  43. Flashback LoggingRVWR Background Process Dumps • To dump flashback generation status use: SQL> ORADEBUG DUMP FLASHBACK_GEN 1 • To dump flashback logfile headers use: SQL> ORADEBUG DUMP FBHDR 1 • To dump all logical flashback records in the current flashback incarnation use: SQL> ORADEBUG DUMP FBINC 1 • To include before images in the above dump use: SQL> ORADEBUG DUMP FBINC 2 • To dump the last 2000 flashback records use: SQL> ORADEBUG DUMP FBTAIL 1

  44. STOP Flashback LogPhysical Structure • Block size determined by db_block_size parameter • Block 0 contains file header • Remaining blocks have 16 byte block header Includes check sum Block Header FileHeader

  45. Flashback RecordsLogical Structure • Added sequentially to flashback logs • Consists of a header and an optional body • If present body is written first followed by header • For all record types • Header includes type and length • Structure is read backwards • Logical records can cross physical record boundaries

  46. STOP Flashback RecordsLogical Structure Body Record# 1 Header Body Record# 2 Header Body Record# 3 Header Header Record# 4 Body Record# 5 Header

  47. STOP Flashback RecordsPhysiological Structure File Header FlashbackRecords Empty Space

  48. Flashback RecordsBlock Images • For block images • Body is a copy of the data block • Used for data blocks, undo blocks • Not compressed • Flashback records are always larger than single block • Include 28 byte header • Common block types appearing as block images include • Data and index blocks (trans data) • Segment headers • Undo headers • Undo blocks (manual and automatic) • Local tablespace bitmap blocks • Automatic segment space management bitmap blocks

  49. Flashback LogsFlashback log tail • New flashback records are always appended beyond the flashback log tail • Flashback database commands start at the flashback log tail and work forwards • To check flashback log tail use: SQL> ALTER SESSION SET EVENTS 'immediate trace name controlf level 2'; • For example: ****************************************************************CHECKPOINT PROGRESS RECORDS****************************************************************THREAD #1 - status:0x2 flags:0x0 dirty:15low cache rba:(0xd.1f33.0) on disk rba:(0xd.1f42.0)on disk scn: 0x0000.0004087e 05/26/2007 18:11:01resetlogs scn: 0x0000.00000001 05/05/2007 23:07:24heartbeat: 623592856 mount id: 310450827Flashback log tail log# 1 thread# 1 seq 10 block 309 byte 0

  50. Flashback Logs Flashback log tail • Current pointer is also maintained in SGA. For example: SQL> ALTER SESSION SET EVENTS 'immediate trace name global_area level 2'; krfwb krfwbf_ [2000D8BC, 2000D9F0) = 000001E5 00002000 003C7288 00001FE8Dump of memory from 0x2000D8CC to 0x2000D9F02000D8C0 28434200 [.BC(]2000D8D0 003CBD94 000001E6 000001E6 00000003 [..<.............]2000D8E0 2A61B71C 00000002 003C7288 00000001 [..a*.....r<.....]2000D8F0 00000001 002A21F0 00000002 00000000 [.....!*.........]2000D900 00000001 00000000 00000000 00000002 [................]2000D910 00000000 002A01D4 003C6C3C 00000001 [......*.<l<.....]2000D920 00000000 00000000 00000002 00000001 [................]2000D930 00000000 00000000 00000152 00000002 [........R.......]2000D940 0000000A 00000135 00000001 000002B4 [....5...........]2000D950 000001E5 00000000 00000000 00000000 [................]2000D960 00000000 24ACC246 00000030 00000001 [....F..$0.......]2000D970 00000001 0000000A 00000009 000003E8 [................]2000D980 00002000 00000000 2A4976FC 2BBBA220 [. .......vI* ..+]2000D990 2A567EEC 00000047 0000000A 00000001 [.~V*G...........]2000D9A0 00000000 00000001 00000009 00000000 [................]2000D9B0 00000001 00000080 00000800 00000000 [................]2000D9C0 00000000 00000000 00000000 00000000 [................]2000D9D0 00000001 00000000 00000000 00000000 [................]2000D9E0 001E5ECA 002A2050 00000000 00000000 [.^..P *.........] Sequence Number0xA = 10 Block Number0x135=309 Log Number0x1=1

More Related