1 / 19

Deciphering the substrate specificity of ubiquitin conjugating enzymes

Deciphering the substrate specificity of ubiquitin conjugating enzymes. Fábio M. Marques Madeira Supervisor: Professor Ronald T. Hay. 24 th July 2013. Protein ubiquitylation. Hochstrasser , M. (2009) Nature 458 , 422–9. 1. The ubiquitin modification cascade. RNF4.

vivian
Download Presentation

Deciphering the substrate specificity of ubiquitin conjugating enzymes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Deciphering the substrate specificity of ubiquitin conjugating enzymes Fábio M. Marques Madeira Supervisor: Professor Ronald T. Hay 24th July 2013

  2. Protein ubiquitylation Hochstrasser, M. (2009) Nature458, 422–9 1

  3. The ubiquitin modification cascade RNF4 STUbL having a key role in DNA damage response Woelk, et al. (2007) Cell Division2:11 2

  4. RNF4 RING bond to ubiquitin-loaded UbcH5a Plechanovová, et al. (2012) Nature489, 115–20 3

  5. RNF4 RING bond to ubiquitin-loaded UbcH5a pKa 10.5 ± 1.1 ε-amino group of lysine Tetrahedral transition state intermediary Plechanovová, et al. (2012) Nature489, 115–20 4

  6. Ube2W conjugates ubiquitin to α-amino groups of protein N-termini pKa 7.7 ± 0.5 α-amino group of the substrate N-terminus Tatham, et al. (2013) The Biochemical Journal453, 137–45 5

  7. Aims Investigate what are the features of the active site of UbcH5a and Ube2W that enable them do discriminate between N-terminal α-amino groups and Lys ε-amino groups • Sequence and structure-informed mutational analysis of key residues • Protein expression and purification of the mutant proteins • Biochemical characterization of the proteins and in vitro ubiquitin conjugation assays 6

  8. Structural analysis of UbcH5a and Ube2W Helix 1 D117 * N77 Helix 2 Ubiquitin (4AP4:F) Ube2W model (I-TASSER) UbcH5a (4AP4:E) Ube2W model (Phyre2) Ube2W (2A7L:A) N 7

  9. Multiple alignment analysis of UbcH5a and Ube2W Helix 2 Helix 1 UbcH5a~Ubiquitin (4AP4:E~F) Model of Ube2W~Ubiquitin (4AP4:F) 8

  10. Multiple alignment analysis of UbcH5a and Ube2W Helix 2 Helix 1 Ube2W M1 – H94N M2 – K133P/R134D/R135D M3 – M1/M2 M4 – S129D/delC130/K131P/E132N/K133P/R134D/R135D M5 – M1/M4 UbcH5a M1 – N77H M2 – P115K/D116R/D117R M3 – M1/M2 M4 – D112S/insC/P113K/N114E/P115K/D116R/D117R M5 – M1/M4 8

  11. Protein expression and purification E. coli BL21 (DE3) - + M2 - + M2 - + wt M1 - + - + M3 M3 - + M2 - + M4 - + - + M4 M3 - + M5 - + - + M5 - + M4 M5 - + IPTG Site-directed mutagenesis kDa 18 75 - 50 - His6-UbcH5a 37 - 25 - 20 - Mutant strand synthesis DpnI digestion DNA sequencing 15 - 10 - ArcticExpress (DE3) Rosetta (DE3) IPTG kDa 75 -  Cpn60 50 - 37 - 25 - 20 - His6-UbcH5a 15 -  Cpn10 10 - 9

  12. Protein expression and purification E. coli Rosetta (DE3) E. coli BL21 (DE3) - + wt wt - + M1 M1 - + - + - + M2 M2 - + - + M3 M3 - + - + M4 M4 - + - + - + M5 M5 IPTG IPTG Site-directed mutagenesis kDa kDa 18 75 - 75 - 50 - 50 -  His6-Ube2W  His6-UbcH5a 37 - 37 - 25 - 25 - 20 - 20 - Mutant strand synthesis DpnI digestion DNA sequencing 15 - 15 - 10 - 10 - 9

  13. Protein expression and purification S F B W E T Ube2W M2-5 Ube2W wtand M1 C C S F S F B W B W E T E T kDa Lyse cells kDa kDa Wash 75 - 75 - 75 - 50 - 50 - 50 - Elute 37 - 37 - 37 - Expression vector Cleavage with TEV protease Purified proteins Ni-NTA resin His6-tagged proteins  His6-Ube2W His6-UbcH5a 25 - 25 - Ube2W 25 - UbcH5a  His6-Ube2W 20 - 20 - 20 - Ube2W 15 - 15 - 15 - UbcH5a wtand M1-3 His6-tag His6-tag  His6-tag 10 - 10 - 10 - F – Flow-through B – First wash C – Cell suspension S – Supernatant W – Second wash E – Elution T – After His6-tag cleavage with TEV 10

  14. Protein expression and purification Ube2W M2-5 kDa 13 2 3 4 5 7 8 9 10 11 12 6 1 20 - C S F B W E T 15 - kDa Gel filtration on a HiLoad 16/60 Superdex 75 pg 75 - 50 - 37 - 25 -  His6-Ube2W 20 - Ube2W 15 - His6-tag 10 - 7 13 6 1 Equilibriumofmonersanddimers Vittal, et al. (2013) Cell Biochemistry and Biophysics 13, 9633-5 11

  15. The ability of mutant proteins to form E2~Ub thioester bonds wt wt M1 M1 M2 M2 M3 M3 M4 M5 Reaction mix: + + + ATP E1 E2 Ub Ube2W UbcH5a Time Time Ube2W~Ub kDa kDa UbcH5a~Ub 25 - 25 - 25 - 25 - Ube2W  UbcH5a 20 - 20 - 20 - 20 - 15 - 15 - 15 - 15 - Ubiquitin Ubiquitin Non-reducing SDS-PAGE 10 - 10 - 10 - 10 - Ube2W  UbcH5a Ubiquitin Ubiquitin Reducing SDS-PAGE M1 – N77H M2 – P115K/D116R/D117R M3 – M1/M2 12

  16. pH titration analysis of UbcH5a and Ube2W 6.5 6.5 7.0 7.0 7.5 7.5 8.0 8.0 8.5 8.5 9.0 9.0 9.5 9.5 10.0 10.0 10.5 10.5 11.0 11.0 pH Time Reaction mix: + + + ATP + + E1 E2 Ub E3 kDa  His6-SUMO-2x4~Ub kDa UbcH5a  His6-SUMO-2x4 75 - 75 - 75 - 75 - 50 - 50 - 50 - 50 -  His6-SUMO-2x4~Ub UbcH5a N77H Peptide-His6-SUMO-2x4  His6-SUMO-2x4 SUMO-2 SUMO-2SUMO-2 SUMO-2 N His6 pH Time  His6-SUMO-2x4~Ub Ube2W  His6-SUMO-2x4  His6-SUMO-2x4~Ub Ube2W M3  His6-SUMO-2x4 M3 – H94N/ K133P/R134D/R135D 13

  17. Conclusions • Key residues in the active site of Ube2W are different from most of the conserved E2s • Ube2W shows an equilibrium of monomers and dimers that does not rely on the C-terminus • Most of the mutant proteins can still form a thioester bond with ubiquitin, although their ability to modify a poly-SUMO2 substrate is affected • Ube2W shows pH-dependent activity at pH below 9.0 14

  18. Future work • Try to overcome low expression of UbcH5a mutants by DNA synthesis of the constructs with codon optimization • Investigate what are the key features of N-terminal amino groups modified by Ube2W, using N-terminal modified substrates (myc-tag, in vitrocarbamylation, etc.) • Try solving the structure of RNF4-Ube2W~Ubiquitin mutating the catalytic Cys to Lys to form an isopeptide linkage 15

  19. Acknowledgements • Professor Ronald T. Hay • Anna Plechanovová • Ellis Jaffray • Linnan Shen • Mike Tatham • … all members of the Hay group!

More Related